Matches in SemOpenAlex for { <https://semopenalex.org/work/W3110285703> ?p ?o ?g. }
- W3110285703 endingPage "1657" @default.
- W3110285703 startingPage "1629" @default.
- W3110285703 abstract "Abstract Deep learning (DL) is a numerical method that approximates functions. Recently, its use has become attractive for the simulation and inversion of multiple problems in computational mechanics, including the inversion of borehole logging measurements for oil and gas applications. In this context, DL methods exhibit two key attractive features: (a) once trained, they enable to solve an inverse problem in a fraction of a second, which is convenient for borehole geosteering operations as well as in other real‐time inversion applications. (b) DL methods exhibit a superior capability for approximating highly complex functions across different areas of knowledge. Nevertheless, as it occurs with most numerical methods, DL also relies on expert design decisions that are problem specific to achieve reliable and robust results. Herein, we investigate two key aspects of deep neural networks (DNNs) when applied to the inversion of borehole resistivity measurements: error control and adequate selection of the loss function. As we illustrate via theoretical considerations and extensive numerical experiments, these interrelated aspects are critical to recover accurate inversion results." @default.
- W3110285703 created "2020-12-07" @default.
- W3110285703 creator A5001350665 @default.
- W3110285703 creator A5017326471 @default.
- W3110285703 creator A5024876563 @default.
- W3110285703 creator A5026876282 @default.
- W3110285703 creator A5047670715 @default.
- W3110285703 creator A5048902031 @default.
- W3110285703 creator A5082696717 @default.
- W3110285703 creator A5088962074 @default.
- W3110285703 date "2021-01-04" @default.
- W3110285703 modified "2023-10-17" @default.
- W3110285703 title "Error control and loss functions for the deep learning inversion of borehole resistivity measurements" @default.
- W3110285703 cites W1512208174 @default.
- W3110285703 cites W1965317131 @default.
- W3110285703 cites W1984541135 @default.
- W3110285703 cites W1992113782 @default.
- W3110285703 cites W2000525066 @default.
- W3110285703 cites W2005315407 @default.
- W3110285703 cites W2013338341 @default.
- W3110285703 cites W2026430219 @default.
- W3110285703 cites W2047073810 @default.
- W3110285703 cites W2088869937 @default.
- W3110285703 cites W2092091858 @default.
- W3110285703 cites W2114424556 @default.
- W3110285703 cites W2115976540 @default.
- W3110285703 cites W2127418117 @default.
- W3110285703 cites W2157335346 @default.
- W3110285703 cites W2161068990 @default.
- W3110285703 cites W2180559371 @default.
- W3110285703 cites W2194775991 @default.
- W3110285703 cites W2510466051 @default.
- W3110285703 cites W2574952845 @default.
- W3110285703 cites W2741881058 @default.
- W3110285703 cites W2772434162 @default.
- W3110285703 cites W2808793425 @default.
- W3110285703 cites W2810292802 @default.
- W3110285703 cites W2897537125 @default.
- W3110285703 cites W2906386705 @default.
- W3110285703 cites W2954606597 @default.
- W3110285703 cites W2955712958 @default.
- W3110285703 cites W2962957157 @default.
- W3110285703 cites W2963459284 @default.
- W3110285703 cites W2963881378 @default.
- W3110285703 cites W3015254183 @default.
- W3110285703 cites W3015858546 @default.
- W3110285703 cites W3016406005 @default.
- W3110285703 cites W3021149756 @default.
- W3110285703 cites W4256161595 @default.
- W3110285703 cites W1753882119 @default.
- W3110285703 doi "https://doi.org/10.1002/nme.6593" @default.
- W3110285703 hasPublicationYear "2021" @default.
- W3110285703 type Work @default.
- W3110285703 sameAs 3110285703 @default.
- W3110285703 citedByCount "24" @default.
- W3110285703 countsByYear W31102857032021 @default.
- W3110285703 countsByYear W31102857032022 @default.
- W3110285703 countsByYear W31102857032023 @default.
- W3110285703 crossrefType "journal-article" @default.
- W3110285703 hasAuthorship W3110285703A5001350665 @default.
- W3110285703 hasAuthorship W3110285703A5017326471 @default.
- W3110285703 hasAuthorship W3110285703A5024876563 @default.
- W3110285703 hasAuthorship W3110285703A5026876282 @default.
- W3110285703 hasAuthorship W3110285703A5047670715 @default.
- W3110285703 hasAuthorship W3110285703A5048902031 @default.
- W3110285703 hasAuthorship W3110285703A5082696717 @default.
- W3110285703 hasAuthorship W3110285703A5088962074 @default.
- W3110285703 hasBestOaLocation W31102857032 @default.
- W3110285703 hasConcept C11413529 @default.
- W3110285703 hasConcept C126255220 @default.
- W3110285703 hasConcept C127313418 @default.
- W3110285703 hasConcept C134306372 @default.
- W3110285703 hasConcept C135252773 @default.
- W3110285703 hasConcept C143606050 @default.
- W3110285703 hasConcept C150560799 @default.
- W3110285703 hasConcept C154945302 @default.
- W3110285703 hasConcept C165205528 @default.
- W3110285703 hasConcept C187320778 @default.
- W3110285703 hasConcept C1893757 @default.
- W3110285703 hasConcept C33923547 @default.
- W3110285703 hasConcept C35817400 @default.
- W3110285703 hasConcept C41008148 @default.
- W3110285703 hasConcept C50644808 @default.
- W3110285703 hasConcept C76155785 @default.
- W3110285703 hasConcept C77928131 @default.
- W3110285703 hasConcept C8058405 @default.
- W3110285703 hasConcept C84174578 @default.
- W3110285703 hasConceptScore W3110285703C11413529 @default.
- W3110285703 hasConceptScore W3110285703C126255220 @default.
- W3110285703 hasConceptScore W3110285703C127313418 @default.
- W3110285703 hasConceptScore W3110285703C134306372 @default.
- W3110285703 hasConceptScore W3110285703C135252773 @default.
- W3110285703 hasConceptScore W3110285703C143606050 @default.
- W3110285703 hasConceptScore W3110285703C150560799 @default.
- W3110285703 hasConceptScore W3110285703C154945302 @default.
- W3110285703 hasConceptScore W3110285703C165205528 @default.
- W3110285703 hasConceptScore W3110285703C187320778 @default.
- W3110285703 hasConceptScore W3110285703C1893757 @default.