Matches in SemOpenAlex for { <https://semopenalex.org/work/W3120348542> ?p ?o ?g. }
- W3120348542 endingPage "80" @default.
- W3120348542 startingPage "66" @default.
- W3120348542 abstract "PURPOSE Neoadjuvant chemotherapy (NAC) is used to treat locally advanced breast cancer (LABC) and high-risk early breast cancer (BC). Pathological complete response (pCR) has prognostic value depending on BC subtype. Rates of pCR, however, can be variable. Predictive modeling is desirable to help identify patients early who may have suboptimal NAC response. Here, we test and compare the predictive performances of machine learning (ML) prediction models to a standard statistical model, using clinical and pathological data. METHODS Clinical and pathological variables were collected in 431 patients, including tumor size, patient demographics, histological characteristics, molecular status, and staging information. A standard multivariable logistic regression (MLR) was developed and compared with five ML models: k-nearest neighbor classifier, random forest (RF) classifier, naive Bayes algorithm, support vector machine, and multilayer perceptron model. Model performances were measured using a receiver operating characteristic (ROC) analysis and statistically compared. RESULTS MLR predictors of NAC response included: estrogen receptor (ER) status, human epidermal growth factor-2 (HER2) status, tumor size, and Nottingham grade. The strongest MLR predictors of pCR included HER2+ versus HER2− BC (odds ratio [OR], 0.13; 95% CI, 0.07 to 0.23; P < .001) and Nottingham grade G3 versus G1-2 (G1-2: OR, 0.36; 95% CI, 0.20 to 0.65; P < .001). The area under the curve (AUC) for the MLR was AUC = 0.64. Among the various ML models, an RF classifier performed best, with an AUC = 0.88, sensitivity of 70.7%, and specificity of 84.6%, and included the following variables: menopausal status, ER status, HER2 status, Nottingham grade, tumor size, nodal status, and presence of inflammatory BC. CONCLUSION Modeling performances varied between standard versus ML classification methods. RF ML classifiers demonstrated the best predictive performance among all models." @default.
- W3120348542 created "2021-01-18" @default.
- W3120348542 creator A5007591453 @default.
- W3120348542 creator A5016909544 @default.
- W3120348542 creator A5017246967 @default.
- W3120348542 creator A5017745259 @default.
- W3120348542 creator A5024896680 @default.
- W3120348542 creator A5028848754 @default.
- W3120348542 creator A5030239845 @default.
- W3120348542 creator A5046342721 @default.
- W3120348542 creator A5057024351 @default.
- W3120348542 creator A5071785236 @default.
- W3120348542 creator A5076142046 @default.
- W3120348542 creator A5080287170 @default.
- W3120348542 creator A5085356697 @default.
- W3120348542 creator A5086986429 @default.
- W3120348542 date "2021-12-01" @default.
- W3120348542 modified "2023-10-16" @default.
- W3120348542 title "Machine Learning Frameworks to Predict Neoadjuvant Chemotherapy Response in Breast Cancer Using Clinical and Pathological Features" @default.
- W3120348542 cites W1509749834 @default.
- W3120348542 cites W1573146092 @default.
- W3120348542 cites W1789016606 @default.
- W3120348542 cites W1976732842 @default.
- W3120348542 cites W1989333741 @default.
- W3120348542 cites W2063981093 @default.
- W3120348542 cites W2074703669 @default.
- W3120348542 cites W2075894019 @default.
- W3120348542 cites W2082187635 @default.
- W3120348542 cites W2093375708 @default.
- W3120348542 cites W2096145980 @default.
- W3120348542 cites W2125794840 @default.
- W3120348542 cites W2147415463 @default.
- W3120348542 cites W2148143831 @default.
- W3120348542 cites W2151480498 @default.
- W3120348542 cites W2157825442 @default.
- W3120348542 cites W2162713066 @default.
- W3120348542 cites W2173764926 @default.
- W3120348542 cites W2579213716 @default.
- W3120348542 cites W2618058692 @default.
- W3120348542 cites W2789758093 @default.
- W3120348542 cites W2800158081 @default.
- W3120348542 cites W2808866466 @default.
- W3120348542 cites W2888109941 @default.
- W3120348542 cites W2896886167 @default.
- W3120348542 cites W2898574163 @default.
- W3120348542 cites W2898793465 @default.
- W3120348542 cites W2967761591 @default.
- W3120348542 cites W2998175747 @default.
- W3120348542 cites W2998618511 @default.
- W3120348542 cites W3006134372 @default.
- W3120348542 doi "https://doi.org/10.1200/cci.20.00078" @default.
- W3120348542 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33439725" @default.
- W3120348542 hasPublicationYear "2021" @default.
- W3120348542 type Work @default.
- W3120348542 sameAs 3120348542 @default.
- W3120348542 citedByCount "21" @default.
- W3120348542 countsByYear W31203485422021 @default.
- W3120348542 countsByYear W31203485422022 @default.
- W3120348542 countsByYear W31203485422023 @default.
- W3120348542 crossrefType "journal-article" @default.
- W3120348542 hasAuthorship W3120348542A5007591453 @default.
- W3120348542 hasAuthorship W3120348542A5016909544 @default.
- W3120348542 hasAuthorship W3120348542A5017246967 @default.
- W3120348542 hasAuthorship W3120348542A5017745259 @default.
- W3120348542 hasAuthorship W3120348542A5024896680 @default.
- W3120348542 hasAuthorship W3120348542A5028848754 @default.
- W3120348542 hasAuthorship W3120348542A5030239845 @default.
- W3120348542 hasAuthorship W3120348542A5046342721 @default.
- W3120348542 hasAuthorship W3120348542A5057024351 @default.
- W3120348542 hasAuthorship W3120348542A5071785236 @default.
- W3120348542 hasAuthorship W3120348542A5076142046 @default.
- W3120348542 hasAuthorship W3120348542A5080287170 @default.
- W3120348542 hasAuthorship W3120348542A5085356697 @default.
- W3120348542 hasAuthorship W3120348542A5086986429 @default.
- W3120348542 hasConcept C119857082 @default.
- W3120348542 hasConcept C121608353 @default.
- W3120348542 hasConcept C12267149 @default.
- W3120348542 hasConcept C126322002 @default.
- W3120348542 hasConcept C143998085 @default.
- W3120348542 hasConcept C151956035 @default.
- W3120348542 hasConcept C154945302 @default.
- W3120348542 hasConcept C207886595 @default.
- W3120348542 hasConcept C34626388 @default.
- W3120348542 hasConcept C41008148 @default.
- W3120348542 hasConcept C52001869 @default.
- W3120348542 hasConcept C530470458 @default.
- W3120348542 hasConcept C58471807 @default.
- W3120348542 hasConcept C71924100 @default.
- W3120348542 hasConceptScore W3120348542C119857082 @default.
- W3120348542 hasConceptScore W3120348542C121608353 @default.
- W3120348542 hasConceptScore W3120348542C12267149 @default.
- W3120348542 hasConceptScore W3120348542C126322002 @default.
- W3120348542 hasConceptScore W3120348542C143998085 @default.
- W3120348542 hasConceptScore W3120348542C151956035 @default.
- W3120348542 hasConceptScore W3120348542C154945302 @default.
- W3120348542 hasConceptScore W3120348542C207886595 @default.
- W3120348542 hasConceptScore W3120348542C34626388 @default.
- W3120348542 hasConceptScore W3120348542C41008148 @default.