Matches in SemOpenAlex for { <https://semopenalex.org/work/W3127029151> ?p ?o ?g. }
- W3127029151 endingPage "1429" @default.
- W3127029151 startingPage "1419" @default.
- W3127029151 abstract "ConspectusOriented atomic attachment of colloidal inorganic nanocrystals represents a powerful synthetic method for preparing complex inorganic superstructures. Examples include fusion of nanocrystals into dimer and superlattice structures. If the attachment were perfect throughout, then the resulting materials would have single crystal-like alignment of the individual nanocrystals’ atomic lattices. While individual colloidal nanocrystals typically are free of many defects, there are a multitude of pathways that can generate defects upon nanocrystal attachment. These attachment generated defects are typically undesirable, and thus developing strategies to favor defect-free attachment or heal defective interfaces are essential. There may also be some cases where attachment-derived defects are desirable. In this Account, we summarize our current understanding of how these defects arise, in order to offer guidance to those who are designing nanocrystal derived solids.The small size of inorganic nanocrystals means short diffusion lengths to the surface, which favor the formation of nanocrystal building blocks with pristine atomic structures. Upon attachment, however, there are numerous pathways that can lead to atomic scale defects, and bulk crystal dislocation theory provides an invaluable guide to understanding these phenomena. As an example, an atomic step edge can be incorporated into the interface leading to an extra half-plane of atoms, known as an edge dislocation. These dislocations can be well described by the Burgers vector description of dislocations, which geometrically identifies planes in which a dislocation can move. Our in situ measurements have verified that bulk dislocation theory predictions for 1D defects hold true at few-nanometer length scales in PbTe and CdSe nanocrystal interfaces. Ultimately, the applicability of dislocation theory to nanocrystal attachment enables the predictive design of attachment to prevent or facilitate healing of defects upon nanocrystal attachment. We applied similar logic to understand formation of planar (2D) defects such as stacking faults upon nanocrystal attachment. Again concepts from bulk crystal defect crystallography can identify attachment pathways that can prevent or deterministically form planar defects upon nanocrystal attachment. The concepts we discuss work well for identifying favorable attachment geometries for nanocrystal pairs; however it is currently unclear how to translate these ideas to near-simultaneous multiparticle attachment. Geometric frustration, which prevents nanocrystal rotation, and yet-to-be considered defect generation pathways unique to multiparticle attachment complicate defect-free superlattice attachment. New imaging methods now allow for the direct observation of local attachment trajectories and may enable improved understanding of such multiparticle phenomena. With further refinement, a unified framework for understanding and ultimately eliminating structural defects in fused nanocrystal superstructures may well be achievable in coming years." @default.
- W3127029151 created "2021-02-15" @default.
- W3127029151 creator A5037017890 @default.
- W3127029151 creator A5071533799 @default.
- W3127029151 date "2021-02-12" @default.
- W3127029151 modified "2023-10-09" @default.
- W3127029151 title "Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks" @default.
- W3127029151 cites W101015286 @default.
- W3127029151 cites W1969982173 @default.
- W3127029151 cites W1971784141 @default.
- W3127029151 cites W1991488075 @default.
- W3127029151 cites W1994460820 @default.
- W3127029151 cites W1998420645 @default.
- W3127029151 cites W1999232052 @default.
- W3127029151 cites W1999783956 @default.
- W3127029151 cites W2018324493 @default.
- W3127029151 cites W2029917248 @default.
- W3127029151 cites W2037883328 @default.
- W3127029151 cites W2049560471 @default.
- W3127029151 cites W2058146022 @default.
- W3127029151 cites W2063832829 @default.
- W3127029151 cites W2065279539 @default.
- W3127029151 cites W2065458785 @default.
- W3127029151 cites W2071794968 @default.
- W3127029151 cites W2082068401 @default.
- W3127029151 cites W2083597469 @default.
- W3127029151 cites W2086544870 @default.
- W3127029151 cites W2089369093 @default.
- W3127029151 cites W2092724390 @default.
- W3127029151 cites W2117274978 @default.
- W3127029151 cites W2142175727 @default.
- W3127029151 cites W2145864544 @default.
- W3127029151 cites W2158343197 @default.
- W3127029151 cites W2165450084 @default.
- W3127029151 cites W2191474117 @default.
- W3127029151 cites W2276468006 @default.
- W3127029151 cites W2292799053 @default.
- W3127029151 cites W2322886371 @default.
- W3127029151 cites W2326189716 @default.
- W3127029151 cites W2512844436 @default.
- W3127029151 cites W2787902207 @default.
- W3127029151 cites W2806663680 @default.
- W3127029151 cites W2897805487 @default.
- W3127029151 cites W2903122088 @default.
- W3127029151 cites W2921478518 @default.
- W3127029151 cites W2954067904 @default.
- W3127029151 cites W2964569803 @default.
- W3127029151 cites W2979539224 @default.
- W3127029151 cites W2986592645 @default.
- W3127029151 cites W3028762187 @default.
- W3127029151 cites W3100067321 @default.
- W3127029151 cites W3103121250 @default.
- W3127029151 doi "https://doi.org/10.1021/acs.accounts.0c00719" @default.
- W3127029151 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33576596" @default.
- W3127029151 hasPublicationYear "2021" @default.
- W3127029151 type Work @default.
- W3127029151 sameAs 3127029151 @default.
- W3127029151 citedByCount "7" @default.
- W3127029151 countsByYear W31270291512021 @default.
- W3127029151 countsByYear W31270291512022 @default.
- W3127029151 countsByYear W31270291512023 @default.
- W3127029151 crossrefType "journal-article" @default.
- W3127029151 hasAuthorship W3127029151A5037017890 @default.
- W3127029151 hasAuthorship W3127029151A5071533799 @default.
- W3127029151 hasBestOaLocation W31270291513 @default.
- W3127029151 hasConcept C105382558 @default.
- W3127029151 hasConcept C121332964 @default.
- W3127029151 hasConcept C159122135 @default.
- W3127029151 hasConcept C159467904 @default.
- W3127029151 hasConcept C159985019 @default.
- W3127029151 hasConcept C162307627 @default.
- W3127029151 hasConcept C171250308 @default.
- W3127029151 hasConcept C175854130 @default.
- W3127029151 hasConcept C185592680 @default.
- W3127029151 hasConcept C192562407 @default.
- W3127029151 hasConcept C206744179 @default.
- W3127029151 hasConcept C41008148 @default.
- W3127029151 hasConcept C49040817 @default.
- W3127029151 hasConcept C62520636 @default.
- W3127029151 hasConcept C66823137 @default.
- W3127029151 hasConcept C76155785 @default.
- W3127029151 hasConcept C8010536 @default.
- W3127029151 hasConceptScore W3127029151C105382558 @default.
- W3127029151 hasConceptScore W3127029151C121332964 @default.
- W3127029151 hasConceptScore W3127029151C159122135 @default.
- W3127029151 hasConceptScore W3127029151C159467904 @default.
- W3127029151 hasConceptScore W3127029151C159985019 @default.
- W3127029151 hasConceptScore W3127029151C162307627 @default.
- W3127029151 hasConceptScore W3127029151C171250308 @default.
- W3127029151 hasConceptScore W3127029151C175854130 @default.
- W3127029151 hasConceptScore W3127029151C185592680 @default.
- W3127029151 hasConceptScore W3127029151C192562407 @default.
- W3127029151 hasConceptScore W3127029151C206744179 @default.
- W3127029151 hasConceptScore W3127029151C41008148 @default.
- W3127029151 hasConceptScore W3127029151C49040817 @default.
- W3127029151 hasConceptScore W3127029151C62520636 @default.
- W3127029151 hasConceptScore W3127029151C66823137 @default.
- W3127029151 hasConceptScore W3127029151C76155785 @default.