Matches in SemOpenAlex for { <https://semopenalex.org/work/W3130145854> ?p ?o ?g. }
- W3130145854 endingPage "984" @default.
- W3130145854 startingPage "984" @default.
- W3130145854 abstract "The behaviours of individual flow structures have become a relevant matter of study in turbulent flows as the computational power to allow their study feasible has become available. Especially, high instantaneous Reynolds Stress events have been found to dominate the behaviour of the logarithmic layer. In this work, we present a viability study where two machine learning solutions are proposed to reduce the computational cost of tracking such structures in large domains. The first one is a Multi-Layer Perceptron. The second one uses Long Short-Term Memory (LSTM). Both of the methods are developed with the objective of taking the the structures’ geometrical features as inputs from which to predict the structures’ geometrical features in future time steps. Some of the tested Multi-Layer Perceptron architectures proved to perform better and achieve higher accuracy than the LSTM architectures tested, providing lower errors on the predictions and achieving higher accuracy in relating the structures in the consecutive time steps." @default.
- W3130145854 created "2021-03-01" @default.
- W3130145854 creator A5011605866 @default.
- W3130145854 creator A5014225653 @default.
- W3130145854 creator A5044834700 @default.
- W3130145854 creator A5053646895 @default.
- W3130145854 creator A5085550758 @default.
- W3130145854 date "2021-02-13" @default.
- W3130145854 modified "2023-10-17" @default.
- W3130145854 title "Tracking Turbulent Coherent Structures by Means of Neural Networks" @default.
- W3130145854 cites W1975456273 @default.
- W3130145854 cites W1976638764 @default.
- W3130145854 cites W1981691723 @default.
- W3130145854 cites W1988607050 @default.
- W3130145854 cites W1988916147 @default.
- W3130145854 cites W1992742391 @default.
- W3130145854 cites W2003331893 @default.
- W3130145854 cites W2024116976 @default.
- W3130145854 cites W2050422730 @default.
- W3130145854 cites W2062443841 @default.
- W3130145854 cites W2064675550 @default.
- W3130145854 cites W2077651848 @default.
- W3130145854 cites W2082506167 @default.
- W3130145854 cites W2092721527 @default.
- W3130145854 cites W2103496339 @default.
- W3130145854 cites W2103606462 @default.
- W3130145854 cites W2131537960 @default.
- W3130145854 cites W2135045092 @default.
- W3130145854 cites W2136848157 @default.
- W3130145854 cites W2137983211 @default.
- W3130145854 cites W2293609966 @default.
- W3130145854 cites W2534240011 @default.
- W3130145854 cites W2770098248 @default.
- W3130145854 cites W2793821340 @default.
- W3130145854 cites W2795982117 @default.
- W3130145854 cites W2800856697 @default.
- W3130145854 cites W2884981358 @default.
- W3130145854 cites W2905780621 @default.
- W3130145854 cites W2951279763 @default.
- W3130145854 cites W2962757926 @default.
- W3130145854 cites W2997171342 @default.
- W3130145854 cites W3004816072 @default.
- W3130145854 cites W3037946026 @default.
- W3130145854 cites W3093027387 @default.
- W3130145854 cites W3101260319 @default.
- W3130145854 cites W3102140816 @default.
- W3130145854 doi "https://doi.org/10.3390/en14040984" @default.
- W3130145854 hasPublicationYear "2021" @default.
- W3130145854 type Work @default.
- W3130145854 sameAs 3130145854 @default.
- W3130145854 citedByCount "6" @default.
- W3130145854 countsByYear W31301458542022 @default.
- W3130145854 countsByYear W31301458542023 @default.
- W3130145854 crossrefType "journal-article" @default.
- W3130145854 hasAuthorship W3130145854A5011605866 @default.
- W3130145854 hasAuthorship W3130145854A5014225653 @default.
- W3130145854 hasAuthorship W3130145854A5044834700 @default.
- W3130145854 hasAuthorship W3130145854A5053646895 @default.
- W3130145854 hasAuthorship W3130145854A5085550758 @default.
- W3130145854 hasBestOaLocation W31301458541 @default.
- W3130145854 hasConcept C11413529 @default.
- W3130145854 hasConcept C119857082 @default.
- W3130145854 hasConcept C121332964 @default.
- W3130145854 hasConcept C134306372 @default.
- W3130145854 hasConcept C147196274 @default.
- W3130145854 hasConcept C154945302 @default.
- W3130145854 hasConcept C15744967 @default.
- W3130145854 hasConcept C163258240 @default.
- W3130145854 hasConcept C178790620 @default.
- W3130145854 hasConcept C185592680 @default.
- W3130145854 hasConcept C19417346 @default.
- W3130145854 hasConcept C196558001 @default.
- W3130145854 hasConcept C2775936607 @default.
- W3130145854 hasConcept C2779227376 @default.
- W3130145854 hasConcept C33923547 @default.
- W3130145854 hasConcept C39927690 @default.
- W3130145854 hasConcept C41008148 @default.
- W3130145854 hasConcept C50644808 @default.
- W3130145854 hasConcept C57879066 @default.
- W3130145854 hasConcept C60908668 @default.
- W3130145854 hasConcept C62520636 @default.
- W3130145854 hasConceptScore W3130145854C11413529 @default.
- W3130145854 hasConceptScore W3130145854C119857082 @default.
- W3130145854 hasConceptScore W3130145854C121332964 @default.
- W3130145854 hasConceptScore W3130145854C134306372 @default.
- W3130145854 hasConceptScore W3130145854C147196274 @default.
- W3130145854 hasConceptScore W3130145854C154945302 @default.
- W3130145854 hasConceptScore W3130145854C15744967 @default.
- W3130145854 hasConceptScore W3130145854C163258240 @default.
- W3130145854 hasConceptScore W3130145854C178790620 @default.
- W3130145854 hasConceptScore W3130145854C185592680 @default.
- W3130145854 hasConceptScore W3130145854C19417346 @default.
- W3130145854 hasConceptScore W3130145854C196558001 @default.
- W3130145854 hasConceptScore W3130145854C2775936607 @default.
- W3130145854 hasConceptScore W3130145854C2779227376 @default.
- W3130145854 hasConceptScore W3130145854C33923547 @default.
- W3130145854 hasConceptScore W3130145854C39927690 @default.
- W3130145854 hasConceptScore W3130145854C41008148 @default.