Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147008637> ?p ?o ?g. }
- W3147008637 endingPage "2716" @default.
- W3147008637 startingPage "2699" @default.
- W3147008637 abstract "Abstract. An ability to accurately detect convective regions is essential for initializing models for short-term precipitation forecasts. Radar data are commonly used to detect convection, but radars that provide high-temporal-resolution data are mostly available over land, and the quality of the data tends to degrade over mountainous regions. On the other hand, geostationary satellite data are available nearly anywhere and in near-real time. Current operational geostationary satellites, the Geostationary Operational Environmental Satellite-16 (GOES-16) and Satellite-17, provide high-spatial- and high-temporal-resolution data but only of cloud top properties; 1 min data, however, allow us to observe convection from visible and infrared data even without vertical information of the convective system. Existing detection algorithms using visible and infrared data look for static features of convective clouds such as overshooting top or lumpy cloud top surface or cloud growth that occurs over periods of 30 min to an hour. This study represents a proof of concept that artificial intelligence (AI) is able, when given high-spatial- and high-temporal-resolution data from GOES-16, to learn physical properties of convective clouds and automate the detection process. A neural network model with convolutional layers is proposed to identify convection from the high-temporal resolution GOES-16 data. The model takes five temporal images from channel 2 (0.65 µm) and 14 (11.2 µm) as inputs and produces a map of convective regions. In order to provide products comparable to the radar products, it is trained against Multi-Radar Multi-Sensor (MRMS), which is a radar-based product that uses a rather sophisticated method to classify precipitation types. Two channels from GOES-16, each related to cloud optical depth (channel 2) and cloud top height (channel 14), are expected to best represent features of convective clouds: high reflectance, lumpy cloud top surface, and low cloud top temperature. The model has correctly learned those features of convective clouds and resulted in a reasonably low false alarm ratio (FAR) and high probability of detection (POD). However, FAR and POD can vary depending on the threshold, and a proper threshold needs to be chosen based on the purpose." @default.
- W3147008637 created "2021-04-13" @default.
- W3147008637 creator A5044157295 @default.
- W3147008637 creator A5077455505 @default.
- W3147008637 creator A5082309905 @default.
- W3147008637 date "2021-04-08" @default.
- W3147008637 modified "2023-10-01" @default.
- W3147008637 title "Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data" @default.
- W3147008637 cites W1522265489 @default.
- W3147008637 cites W2015772410 @default.
- W3147008637 cites W2030386161 @default.
- W3147008637 cites W2046852393 @default.
- W3147008637 cites W2047421660 @default.
- W3147008637 cites W2050787596 @default.
- W3147008637 cites W2068212092 @default.
- W3147008637 cites W2116493796 @default.
- W3147008637 cites W2123272710 @default.
- W3147008637 cites W2163782462 @default.
- W3147008637 cites W2165876298 @default.
- W3147008637 cites W2259421489 @default.
- W3147008637 cites W2463669762 @default.
- W3147008637 cites W2804943168 @default.
- W3147008637 cites W2808400960 @default.
- W3147008637 cites W2921777072 @default.
- W3147008637 cites W2974510043 @default.
- W3147008637 cites W2974527409 @default.
- W3147008637 cites W2981217223 @default.
- W3147008637 cites W2988908323 @default.
- W3147008637 cites W2996137214 @default.
- W3147008637 cites W3001346916 @default.
- W3147008637 cites W3105945687 @default.
- W3147008637 cites W4241331707 @default.
- W3147008637 doi "https://doi.org/10.5194/amt-14-2699-2021" @default.
- W3147008637 hasPublicationYear "2021" @default.
- W3147008637 type Work @default.
- W3147008637 sameAs 3147008637 @default.
- W3147008637 citedByCount "10" @default.
- W3147008637 countsByYear W31470086372021 @default.
- W3147008637 countsByYear W31470086372022 @default.
- W3147008637 countsByYear W31470086372023 @default.
- W3147008637 crossrefType "journal-article" @default.
- W3147008637 hasAuthorship W3147008637A5044157295 @default.
- W3147008637 hasAuthorship W3147008637A5077455505 @default.
- W3147008637 hasAuthorship W3147008637A5082309905 @default.
- W3147008637 hasBestOaLocation W31470086371 @default.
- W3147008637 hasConcept C104110773 @default.
- W3147008637 hasConcept C10899652 @default.
- W3147008637 hasConcept C111919701 @default.
- W3147008637 hasConcept C114466953 @default.
- W3147008637 hasConcept C119666444 @default.
- W3147008637 hasConcept C121332964 @default.
- W3147008637 hasConcept C127313418 @default.
- W3147008637 hasConcept C1276947 @default.
- W3147008637 hasConcept C153294291 @default.
- W3147008637 hasConcept C16405173 @default.
- W3147008637 hasConcept C19269812 @default.
- W3147008637 hasConcept C199194280 @default.
- W3147008637 hasConcept C199360897 @default.
- W3147008637 hasConcept C205649164 @default.
- W3147008637 hasConcept C2781013037 @default.
- W3147008637 hasConcept C39432304 @default.
- W3147008637 hasConcept C41008148 @default.
- W3147008637 hasConcept C554190296 @default.
- W3147008637 hasConcept C62520636 @default.
- W3147008637 hasConcept C62649853 @default.
- W3147008637 hasConcept C76155785 @default.
- W3147008637 hasConcept C79974875 @default.
- W3147008637 hasConceptScore W3147008637C104110773 @default.
- W3147008637 hasConceptScore W3147008637C10899652 @default.
- W3147008637 hasConceptScore W3147008637C111919701 @default.
- W3147008637 hasConceptScore W3147008637C114466953 @default.
- W3147008637 hasConceptScore W3147008637C119666444 @default.
- W3147008637 hasConceptScore W3147008637C121332964 @default.
- W3147008637 hasConceptScore W3147008637C127313418 @default.
- W3147008637 hasConceptScore W3147008637C1276947 @default.
- W3147008637 hasConceptScore W3147008637C153294291 @default.
- W3147008637 hasConceptScore W3147008637C16405173 @default.
- W3147008637 hasConceptScore W3147008637C19269812 @default.
- W3147008637 hasConceptScore W3147008637C199194280 @default.
- W3147008637 hasConceptScore W3147008637C199360897 @default.
- W3147008637 hasConceptScore W3147008637C205649164 @default.
- W3147008637 hasConceptScore W3147008637C2781013037 @default.
- W3147008637 hasConceptScore W3147008637C39432304 @default.
- W3147008637 hasConceptScore W3147008637C41008148 @default.
- W3147008637 hasConceptScore W3147008637C554190296 @default.
- W3147008637 hasConceptScore W3147008637C62520636 @default.
- W3147008637 hasConceptScore W3147008637C62649853 @default.
- W3147008637 hasConceptScore W3147008637C76155785 @default.
- W3147008637 hasConceptScore W3147008637C79974875 @default.
- W3147008637 hasIssue "4" @default.
- W3147008637 hasLocation W31470086371 @default.
- W3147008637 hasLocation W31470086372 @default.
- W3147008637 hasOpenAccess W3147008637 @default.
- W3147008637 hasPrimaryLocation W31470086371 @default.
- W3147008637 hasRelatedWork W161114941 @default.
- W3147008637 hasRelatedWork W2003007722 @default.
- W3147008637 hasRelatedWork W2020667207 @default.
- W3147008637 hasRelatedWork W2043287399 @default.