Matches in SemOpenAlex for { <https://semopenalex.org/work/W3166279512> ?p ?o ?g. }
- W3166279512 abstract "Interacting particle or agent systems that display a rich variety of swarming behaviours are ubiquitous in science and engineering. A fundamental and challenging goal is to understand the link between individual interaction rules and swarming. In this paper, we study the data-driven discovery of a second-order particle swarming model that describes the evolution of $N$ particles in $mathbb{R}^d$ under radial interactions. We propose a learning approach that models the latent radial interaction function as Gaussian processes, which can simultaneously fulfill two inference goals: one is the nonparametric inference of {the} interaction function with pointwise uncertainty quantification, and the other one is the inference of unknown scalar parameters in the non-collective friction forces of the system. We formulate the learning problem as a statistical inverse problem and provide a detailed analysis of recoverability conditions, establishing that a coercivity condition is sufficient for recoverability. Given data collected from $M$ i.i.d trajectories with independent Gaussian observational noise, we provide a finite-sample analysis, showing that our posterior mean estimator converges in a Reproducing kernel Hilbert space norm, at an optimal rate in $M$ equal to the one in the classical 1-dimensional Kernel Ridge regression. As a byproduct, we show we can obtain a parametric learning rate in $M$ for the posterior marginal variance using $L^{infty}$ norm, and the rate could also involve $N$ and $L$ (the number of observation time instances for each trajectory), depending on the condition number of the inverse problem. Numerical results on systems that exhibit different swarming behaviors demonstrate efficient learning of our approach from scarce noisy trajectory data." @default.
- W3166279512 created "2021-06-22" @default.
- W3166279512 creator A5052474425 @default.
- W3166279512 creator A5063541658 @default.
- W3166279512 creator A5078840209 @default.
- W3166279512 date "2021-06-04" @default.
- W3166279512 modified "2023-09-28" @default.
- W3166279512 title "Learning particle swarming models from data with Gaussian processes" @default.
- W3166279512 cites W1503398984 @default.
- W3166279512 cites W1527392460 @default.
- W3166279512 cites W1560724230 @default.
- W3166279512 cites W1571870753 @default.
- W3166279512 cites W1648445109 @default.
- W3166279512 cites W1746819321 @default.
- W3166279512 cites W1975529482 @default.
- W3166279512 cites W1985775113 @default.
- W3166279512 cites W2002266200 @default.
- W3166279512 cites W2009511046 @default.
- W3166279512 cites W2012501405 @default.
- W3166279512 cites W2027057364 @default.
- W3166279512 cites W2032291279 @default.
- W3166279512 cites W2036883850 @default.
- W3166279512 cites W2051434435 @default.
- W3166279512 cites W2067035389 @default.
- W3166279512 cites W2076451073 @default.
- W3166279512 cites W2099589402 @default.
- W3166279512 cites W2099768828 @default.
- W3166279512 cites W2103013841 @default.
- W3166279512 cites W2103336901 @default.
- W3166279512 cites W2103376147 @default.
- W3166279512 cites W2103714988 @default.
- W3166279512 cites W2112164016 @default.
- W3166279512 cites W2121402967 @default.
- W3166279512 cites W2129823023 @default.
- W3166279512 cites W2143956139 @default.
- W3166279512 cites W2156909104 @default.
- W3166279512 cites W2157942701 @default.
- W3166279512 cites W2570764145 @default.
- W3166279512 cites W2573864470 @default.
- W3166279512 cites W2750449050 @default.
- W3166279512 cites W2880842812 @default.
- W3166279512 cites W2905558281 @default.
- W3166279512 cites W2952677397 @default.
- W3166279512 cites W2962940469 @default.
- W3166279512 cites W2963053844 @default.
- W3166279512 cites W2963127802 @default.
- W3166279512 cites W2963520322 @default.
- W3166279512 cites W2968820104 @default.
- W3166279512 cites W3015672806 @default.
- W3166279512 cites W3025749473 @default.
- W3166279512 cites W3033355066 @default.
- W3166279512 cites W3038310958 @default.
- W3166279512 cites W3045533404 @default.
- W3166279512 cites W3092428788 @default.
- W3166279512 cites W3100969891 @default.
- W3166279512 cites W3128929428 @default.
- W3166279512 cites W3130981914 @default.
- W3166279512 cites W3138278823 @default.
- W3166279512 cites W3170574689 @default.
- W3166279512 cites W37686529 @default.
- W3166279512 cites W589337778 @default.
- W3166279512 doi "https://doi.org/10.48550/arxiv.2106.02735" @default.
- W3166279512 hasPublicationYear "2021" @default.
- W3166279512 type Work @default.
- W3166279512 sameAs 3166279512 @default.
- W3166279512 citedByCount "0" @default.
- W3166279512 crossrefType "posted-content" @default.
- W3166279512 hasAuthorship W3166279512A5052474425 @default.
- W3166279512 hasAuthorship W3166279512A5063541658 @default.
- W3166279512 hasAuthorship W3166279512A5078840209 @default.
- W3166279512 hasBestOaLocation W31662795121 @default.
- W3166279512 hasConcept C105795698 @default.
- W3166279512 hasConcept C121332964 @default.
- W3166279512 hasConcept C121864883 @default.
- W3166279512 hasConcept C126255220 @default.
- W3166279512 hasConcept C134306372 @default.
- W3166279512 hasConcept C154945302 @default.
- W3166279512 hasConcept C163716315 @default.
- W3166279512 hasConcept C185429906 @default.
- W3166279512 hasConcept C2776214188 @default.
- W3166279512 hasConcept C2777984123 @default.
- W3166279512 hasConcept C28826006 @default.
- W3166279512 hasConcept C33923547 @default.
- W3166279512 hasConcept C41008148 @default.
- W3166279512 hasConcept C62520636 @default.
- W3166279512 hasConceptScore W3166279512C105795698 @default.
- W3166279512 hasConceptScore W3166279512C121332964 @default.
- W3166279512 hasConceptScore W3166279512C121864883 @default.
- W3166279512 hasConceptScore W3166279512C126255220 @default.
- W3166279512 hasConceptScore W3166279512C134306372 @default.
- W3166279512 hasConceptScore W3166279512C154945302 @default.
- W3166279512 hasConceptScore W3166279512C163716315 @default.
- W3166279512 hasConceptScore W3166279512C185429906 @default.
- W3166279512 hasConceptScore W3166279512C2776214188 @default.
- W3166279512 hasConceptScore W3166279512C2777984123 @default.
- W3166279512 hasConceptScore W3166279512C28826006 @default.
- W3166279512 hasConceptScore W3166279512C33923547 @default.
- W3166279512 hasConceptScore W3166279512C41008148 @default.
- W3166279512 hasConceptScore W3166279512C62520636 @default.
- W3166279512 hasLocation W31662795121 @default.