Matches in SemOpenAlex for { <https://semopenalex.org/work/W3189433595> ?p ?o ?g. }
- W3189433595 endingPage "121718" @default.
- W3189433595 startingPage "121718" @default.
- W3189433595 abstract "This paper introduces a novel application area for multivariate copulas in electric vehicle charging event simulation and dependency analysis. We propose a multivariate copula procedure that can be used to generate new synthetic charging events, which retain the complex dependency and correlation structures present in real-world charging events. The paper compares the most popular multivariate copula functions to discover the most reliable one to be used with electric vehicle charging event data. Accurate EV charging event simulation and analysis is crucial in multiple theoretical and practical applications such as charging load and demand response aggregation modelling. Based on multiple goodness-of-fit tests and charging load profiles of simulated charging events, the Student-t copula was found to be the most reliable multivariate copula to be used with EV charging data. Overall, the multivariate copula procedure is effective in analysis and simulation of EV charging events as it retains the inherent variability and complex dependencies of real charging events." @default.
- W3189433595 created "2021-08-16" @default.
- W3189433595 creator A5005393458 @default.
- W3189433595 creator A5070385796 @default.
- W3189433595 date "2022-01-01" @default.
- W3189433595 modified "2023-09-25" @default.
- W3189433595 title "Multivariate copula procedure for electric vehicle charging event simulation" @default.
- W3189433595 cites W1517079789 @default.
- W3189433595 cites W1992105816 @default.
- W3189433595 cites W2015339214 @default.
- W3189433595 cites W2019769688 @default.
- W3189433595 cites W2037531178 @default.
- W3189433595 cites W2037593253 @default.
- W3189433595 cites W2118084620 @default.
- W3189433595 cites W2118483682 @default.
- W3189433595 cites W2152012918 @default.
- W3189433595 cites W2158365507 @default.
- W3189433595 cites W2168175751 @default.
- W3189433595 cites W2306668050 @default.
- W3189433595 cites W2432152265 @default.
- W3189433595 cites W2535580946 @default.
- W3189433595 cites W2550750337 @default.
- W3189433595 cites W2773678293 @default.
- W3189433595 cites W2789027126 @default.
- W3189433595 cites W2797656660 @default.
- W3189433595 cites W2805029881 @default.
- W3189433595 cites W2883845636 @default.
- W3189433595 cites W2884249944 @default.
- W3189433595 cites W2888605497 @default.
- W3189433595 cites W2897967520 @default.
- W3189433595 cites W2898149370 @default.
- W3189433595 cites W2900696922 @default.
- W3189433595 cites W2908644233 @default.
- W3189433595 cites W2912157889 @default.
- W3189433595 cites W2913667840 @default.
- W3189433595 cites W2923302400 @default.
- W3189433595 cites W2950518423 @default.
- W3189433595 cites W2980794264 @default.
- W3189433595 cites W2996678114 @default.
- W3189433595 cites W3004008783 @default.
- W3189433595 cites W3012287906 @default.
- W3189433595 cites W3013857337 @default.
- W3189433595 cites W3023703922 @default.
- W3189433595 cites W3036063208 @default.
- W3189433595 cites W3039922070 @default.
- W3189433595 cites W3040110988 @default.
- W3189433595 cites W3040799077 @default.
- W3189433595 cites W3041005785 @default.
- W3189433595 cites W3041153132 @default.
- W3189433595 cites W3041459678 @default.
- W3189433595 doi "https://doi.org/10.1016/j.energy.2021.121718" @default.
- W3189433595 hasPublicationYear "2022" @default.
- W3189433595 type Work @default.
- W3189433595 sameAs 3189433595 @default.
- W3189433595 citedByCount "5" @default.
- W3189433595 countsByYear W31894335952022 @default.
- W3189433595 countsByYear W31894335952023 @default.
- W3189433595 crossrefType "journal-article" @default.
- W3189433595 hasAuthorship W3189433595A5005393458 @default.
- W3189433595 hasAuthorship W3189433595A5070385796 @default.
- W3189433595 hasBestOaLocation W31894335951 @default.
- W3189433595 hasConcept C119857082 @default.
- W3189433595 hasConcept C121332964 @default.
- W3189433595 hasConcept C149782125 @default.
- W3189433595 hasConcept C154945302 @default.
- W3189433595 hasConcept C161584116 @default.
- W3189433595 hasConcept C163258240 @default.
- W3189433595 hasConcept C17618745 @default.
- W3189433595 hasConcept C19768560 @default.
- W3189433595 hasConcept C2776422217 @default.
- W3189433595 hasConcept C33923547 @default.
- W3189433595 hasConcept C38180746 @default.
- W3189433595 hasConcept C41008148 @default.
- W3189433595 hasConcept C62520636 @default.
- W3189433595 hasConceptScore W3189433595C119857082 @default.
- W3189433595 hasConceptScore W3189433595C121332964 @default.
- W3189433595 hasConceptScore W3189433595C149782125 @default.
- W3189433595 hasConceptScore W3189433595C154945302 @default.
- W3189433595 hasConceptScore W3189433595C161584116 @default.
- W3189433595 hasConceptScore W3189433595C163258240 @default.
- W3189433595 hasConceptScore W3189433595C17618745 @default.
- W3189433595 hasConceptScore W3189433595C19768560 @default.
- W3189433595 hasConceptScore W3189433595C2776422217 @default.
- W3189433595 hasConceptScore W3189433595C33923547 @default.
- W3189433595 hasConceptScore W3189433595C38180746 @default.
- W3189433595 hasConceptScore W3189433595C41008148 @default.
- W3189433595 hasConceptScore W3189433595C62520636 @default.
- W3189433595 hasFunder F4320321108 @default.
- W3189433595 hasLocation W31894335951 @default.
- W3189433595 hasLocation W31894335952 @default.
- W3189433595 hasOpenAccess W3189433595 @default.
- W3189433595 hasPrimaryLocation W31894335951 @default.
- W3189433595 hasRelatedWork W1511333438 @default.
- W3189433595 hasRelatedWork W1578824628 @default.
- W3189433595 hasRelatedWork W1965218407 @default.
- W3189433595 hasRelatedWork W2384297022 @default.
- W3189433595 hasRelatedWork W2737120671 @default.
- W3189433595 hasRelatedWork W2790516007 @default.