Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196202912> ?p ?o ?g. }
- W3196202912 endingPage "1929" @default.
- W3196202912 startingPage "1929" @default.
- W3196202912 abstract "The fast-growing Internet results in massive amounts of text data. Due to the large volume of the unstructured format of text data, extracting relevant information and its analysis becomes very challenging. Text document clustering is a text-mining process that partitions the set of text-based documents into mutually exclusive clusters in such a way that documents within the same group are similar to each other, while documents from different clusters differ based on the content. One of the biggest challenges in text clustering is partitioning the collection of text data by measuring the relevance of the content in the documents. Addressing this issue, in this work a hybrid swarm intelligence algorithm with a K-means algorithm is proposed for text clustering. First, the hybrid fruit-fly optimization algorithm is tested on ten unconstrained CEC2019 benchmark functions. Next, the proposed method is evaluated on six standard benchmark text datasets. The experimental evaluation on the unconstrained functions, as well as on text-based documents, indicated that the proposed approach is robust and superior to other state-of-the-art methods." @default.
- W3196202912 created "2021-08-30" @default.
- W3196202912 creator A5016475110 @default.
- W3196202912 creator A5047844943 @default.
- W3196202912 creator A5064081550 @default.
- W3196202912 creator A5065801825 @default.
- W3196202912 creator A5068366810 @default.
- W3196202912 creator A5072469505 @default.
- W3196202912 creator A5073834872 @default.
- W3196202912 date "2021-08-13" @default.
- W3196202912 modified "2023-10-16" @default.
- W3196202912 title "Hybrid Fruit-Fly Optimization Algorithm with K-Means for Text Document Clustering" @default.
- W3196202912 cites W1128809682 @default.
- W3196202912 cites W1495662203 @default.
- W3196202912 cites W1995450389 @default.
- W3196202912 cites W2000950277 @default.
- W3196202912 cites W2007042673 @default.
- W3196202912 cites W2016944307 @default.
- W3196202912 cites W2019774836 @default.
- W3196202912 cites W2039473801 @default.
- W3196202912 cites W2049791651 @default.
- W3196202912 cites W2057712948 @default.
- W3196202912 cites W2067191022 @default.
- W3196202912 cites W2076408892 @default.
- W3196202912 cites W2083620785 @default.
- W3196202912 cites W2093195672 @default.
- W3196202912 cites W2114510694 @default.
- W3196202912 cites W2126626732 @default.
- W3196202912 cites W2133686994 @default.
- W3196202912 cites W2141585940 @default.
- W3196202912 cites W2160642098 @default.
- W3196202912 cites W2287303067 @default.
- W3196202912 cites W2289333180 @default.
- W3196202912 cites W2296617112 @default.
- W3196202912 cites W2581254584 @default.
- W3196202912 cites W2890787084 @default.
- W3196202912 cites W2896804239 @default.
- W3196202912 cites W2910543518 @default.
- W3196202912 cites W2919979744 @default.
- W3196202912 cites W2947683354 @default.
- W3196202912 cites W2952822558 @default.
- W3196202912 cites W2954020051 @default.
- W3196202912 cites W2983873840 @default.
- W3196202912 cites W2997982564 @default.
- W3196202912 cites W3009228756 @default.
- W3196202912 cites W3012330071 @default.
- W3196202912 cites W3025998519 @default.
- W3196202912 cites W3033135512 @default.
- W3196202912 cites W3056683541 @default.
- W3196202912 cites W3090740184 @default.
- W3196202912 cites W3123468719 @default.
- W3196202912 cites W3147751175 @default.
- W3196202912 cites W3158845577 @default.
- W3196202912 cites W3164271353 @default.
- W3196202912 cites W3206246976 @default.
- W3196202912 cites W4231029117 @default.
- W3196202912 cites W4234536190 @default.
- W3196202912 cites W4241727697 @default.
- W3196202912 cites W4246396312 @default.
- W3196202912 doi "https://doi.org/10.3390/math9161929" @default.
- W3196202912 hasPublicationYear "2021" @default.
- W3196202912 type Work @default.
- W3196202912 sameAs 3196202912 @default.
- W3196202912 citedByCount "68" @default.
- W3196202912 countsByYear W31962029122021 @default.
- W3196202912 countsByYear W31962029122022 @default.
- W3196202912 countsByYear W31962029122023 @default.
- W3196202912 crossrefType "journal-article" @default.
- W3196202912 hasAuthorship W3196202912A5016475110 @default.
- W3196202912 hasAuthorship W3196202912A5047844943 @default.
- W3196202912 hasAuthorship W3196202912A5064081550 @default.
- W3196202912 hasAuthorship W3196202912A5065801825 @default.
- W3196202912 hasAuthorship W3196202912A5068366810 @default.
- W3196202912 hasAuthorship W3196202912A5072469505 @default.
- W3196202912 hasAuthorship W3196202912A5073834872 @default.
- W3196202912 hasBestOaLocation W31962029121 @default.
- W3196202912 hasConcept C124101348 @default.
- W3196202912 hasConcept C13280743 @default.
- W3196202912 hasConcept C154945302 @default.
- W3196202912 hasConcept C158154518 @default.
- W3196202912 hasConcept C177264268 @default.
- W3196202912 hasConcept C17744445 @default.
- W3196202912 hasConcept C177937566 @default.
- W3196202912 hasConcept C185798385 @default.
- W3196202912 hasConcept C199360897 @default.
- W3196202912 hasConcept C199539241 @default.
- W3196202912 hasConcept C205649164 @default.
- W3196202912 hasConcept C23123220 @default.
- W3196202912 hasConcept C41008148 @default.
- W3196202912 hasConcept C73555534 @default.
- W3196202912 hasConceptScore W3196202912C124101348 @default.
- W3196202912 hasConceptScore W3196202912C13280743 @default.
- W3196202912 hasConceptScore W3196202912C154945302 @default.
- W3196202912 hasConceptScore W3196202912C158154518 @default.
- W3196202912 hasConceptScore W3196202912C177264268 @default.
- W3196202912 hasConceptScore W3196202912C17744445 @default.
- W3196202912 hasConceptScore W3196202912C177937566 @default.
- W3196202912 hasConceptScore W3196202912C185798385 @default.