Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197307708> ?p ?o ?g. }
- W3197307708 endingPage "112679" @default.
- W3197307708 startingPage "112679" @default.
- W3197307708 abstract "Indonesia recently implemented a novel, technology-driven approach for conducting agricultural production surveys, which involves monthly observations at many thousands of strategic locations and automated data logging via a cellular phone application. Data from these comprehensive field surveys offer immense value for advancing remote sensing technology to map crop production across Indonesia, particularly through the development of machine learning approaches to relate survey data with satellite imagery. The objective of this study was to compare different machine learning scenarios for classifying and mapping the temporal progression of paddy rice production stages across West Java, Indonesia using synthetic aperture radar (SAR) and optical remote sensing data from Sentinel-1 and Sentinel-2 satellites. Monthly paddy rice survey data at 21,696 locations across West Java from November 2018 through April 2019 were used for model training and testing. Five classes related to rice production stage or other field conditions were defined, including rice at tillering, heading, and harvest stages, rice fields with little to no vegetation present, and non-rice areas. A recurrent neural network (RNN) with long short term memory (LSTM) nodes provided optimal performance with classification accuracies of 79.6% and 75.9% for model training and testing, respectively, and reduced computational effort. Other approaches that incorporated a convolutional neural network (CNN) either reduced classification accuracy or increased computational effort. Deep machine learning methods (RNN and CNN) generally outperformed other non-deep classifiers, which achieved up to 63.3% accuracy for model testing. Classification accuracies were optimized by inputting two Sentinel-1 channels (VH and VV polarizations) and ten Sentinel-2 channels. Temporal patterns of paddy rice production stages were consistent between the monthly ground-based agricultural survey data and 10-m, satellite-based rice classification maps obtained by applying the LSTM-based RNN across West Java. The results demonstrated the value of combining modern agricultural survey data, satellite remote sensing, and a recurrent neural network to develop multitemporal maps of paddy rice production stages." @default.
- W3197307708 created "2021-09-13" @default.
- W3197307708 creator A5018172510 @default.
- W3197307708 creator A5088384011 @default.
- W3197307708 date "2021-11-01" @default.
- W3197307708 modified "2023-10-16" @default.
- W3197307708 title "Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia" @default.
- W3197307708 cites W1154758367 @default.
- W3197307708 cites W1978946460 @default.
- W3197307708 cites W1985897073 @default.
- W3197307708 cites W1986658172 @default.
- W3197307708 cites W1987643308 @default.
- W3197307708 cites W1990244654 @default.
- W3197307708 cites W1990269578 @default.
- W3197307708 cites W1999843495 @default.
- W3197307708 cites W2034394311 @default.
- W3197307708 cites W2038622951 @default.
- W3197307708 cites W2057584717 @default.
- W3197307708 cites W2058723831 @default.
- W3197307708 cites W2064675550 @default.
- W3197307708 cites W2074501882 @default.
- W3197307708 cites W2075001972 @default.
- W3197307708 cites W2077109367 @default.
- W3197307708 cites W2089554460 @default.
- W3197307708 cites W2115525646 @default.
- W3197307708 cites W2119581707 @default.
- W3197307708 cites W2129084938 @default.
- W3197307708 cites W2131884408 @default.
- W3197307708 cites W2132219356 @default.
- W3197307708 cites W2133941557 @default.
- W3197307708 cites W2141135204 @default.
- W3197307708 cites W2166705692 @default.
- W3197307708 cites W2173499079 @default.
- W3197307708 cites W2290326488 @default.
- W3197307708 cites W2336854855 @default.
- W3197307708 cites W2402632305 @default.
- W3197307708 cites W2468363661 @default.
- W3197307708 cites W2520905560 @default.
- W3197307708 cites W2585309444 @default.
- W3197307708 cites W2606707877 @default.
- W3197307708 cites W2620657726 @default.
- W3197307708 cites W2725897987 @default.
- W3197307708 cites W2769642400 @default.
- W3197307708 cites W2793923031 @default.
- W3197307708 cites W2886106861 @default.
- W3197307708 cites W2886493749 @default.
- W3197307708 cites W2901719150 @default.
- W3197307708 cites W2937220696 @default.
- W3197307708 cites W2963780514 @default.
- W3197307708 cites W3150204327 @default.
- W3197307708 cites W600580655 @default.
- W3197307708 doi "https://doi.org/10.1016/j.rse.2021.112679" @default.
- W3197307708 hasPublicationYear "2021" @default.
- W3197307708 type Work @default.
- W3197307708 sameAs 3197307708 @default.
- W3197307708 citedByCount "41" @default.
- W3197307708 countsByYear W31973077082021 @default.
- W3197307708 countsByYear W31973077082022 @default.
- W3197307708 countsByYear W31973077082023 @default.
- W3197307708 crossrefType "journal-article" @default.
- W3197307708 hasAuthorship W3197307708A5018172510 @default.
- W3197307708 hasAuthorship W3197307708A5088384011 @default.
- W3197307708 hasBestOaLocation W31973077081 @default.
- W3197307708 hasConcept C108583219 @default.
- W3197307708 hasConcept C119857082 @default.
- W3197307708 hasConcept C139719470 @default.
- W3197307708 hasConcept C154945302 @default.
- W3197307708 hasConcept C162324750 @default.
- W3197307708 hasConcept C166957645 @default.
- W3197307708 hasConcept C199360897 @default.
- W3197307708 hasConcept C205649164 @default.
- W3197307708 hasConcept C2778348673 @default.
- W3197307708 hasConcept C41008148 @default.
- W3197307708 hasConcept C50644808 @default.
- W3197307708 hasConcept C548217200 @default.
- W3197307708 hasConcept C62649853 @default.
- W3197307708 hasConcept C81363708 @default.
- W3197307708 hasConcept C85582077 @default.
- W3197307708 hasConcept C87360688 @default.
- W3197307708 hasConceptScore W3197307708C108583219 @default.
- W3197307708 hasConceptScore W3197307708C119857082 @default.
- W3197307708 hasConceptScore W3197307708C139719470 @default.
- W3197307708 hasConceptScore W3197307708C154945302 @default.
- W3197307708 hasConceptScore W3197307708C162324750 @default.
- W3197307708 hasConceptScore W3197307708C166957645 @default.
- W3197307708 hasConceptScore W3197307708C199360897 @default.
- W3197307708 hasConceptScore W3197307708C205649164 @default.
- W3197307708 hasConceptScore W3197307708C2778348673 @default.
- W3197307708 hasConceptScore W3197307708C41008148 @default.
- W3197307708 hasConceptScore W3197307708C50644808 @default.
- W3197307708 hasConceptScore W3197307708C548217200 @default.
- W3197307708 hasConceptScore W3197307708C62649853 @default.
- W3197307708 hasConceptScore W3197307708C81363708 @default.
- W3197307708 hasConceptScore W3197307708C85582077 @default.
- W3197307708 hasConceptScore W3197307708C87360688 @default.
- W3197307708 hasFunder F4320332781 @default.
- W3197307708 hasLocation W31973077081 @default.
- W3197307708 hasOpenAccess W3197307708 @default.