Matches in SemOpenAlex for { <https://semopenalex.org/work/W3200304839> ?p ?o ?g. }
- W3200304839 endingPage "17" @default.
- W3200304839 startingPage "1" @default.
- W3200304839 abstract "Three critical problems, including high-cost instrumentations, time-consuming image recovery, and low image quality, limit clinical applications of diffuse optical tomography (DOT). Image reconstruction based on deep learning can enhance the image quality of DOT, especially in the case of low number of measurements where image reconstruction becomes a more ill-posed and underdetermined problem. Here, we present a sparse-view image reconstruction based on deep learning to recover the absorption coefficient of a phantom. The presented neural network enhances image quality and the results show that deep learning can enhance the contrast to noise-ratio effectively (more than 80%). The presented method provides recovered images with more accurate localization capabilities (an increase in localization metric by more than 30% compared with the classic method). Moreover, the time of image reconstruction is reduced by three orders of magnitude. This method can be applied for single-source DOT that significantly reduces the cost of required instruments for brain imaging and cervical or thyroid cancer screening." @default.
- W3200304839 created "2021-09-27" @default.
- W3200304839 creator A5004391089 @default.
- W3200304839 creator A5056322216 @default.
- W3200304839 date "2021-09-13" @default.
- W3200304839 modified "2023-09-28" @default.
- W3200304839 title "Deep learning based image reconstruction for sparse-view diffuse optical tomography" @default.
- W3200304839 cites W1583920575 @default.
- W3200304839 cites W1789372811 @default.
- W3200304839 cites W1903029394 @default.
- W3200304839 cites W1963833398 @default.
- W3200304839 cites W1968072305 @default.
- W3200304839 cites W1968580794 @default.
- W3200304839 cites W1972150100 @default.
- W3200304839 cites W1973083020 @default.
- W3200304839 cites W1981385803 @default.
- W3200304839 cites W2002365765 @default.
- W3200304839 cites W2017062848 @default.
- W3200304839 cites W2025525672 @default.
- W3200304839 cites W2025941430 @default.
- W3200304839 cites W2026200655 @default.
- W3200304839 cites W2029545400 @default.
- W3200304839 cites W2031315300 @default.
- W3200304839 cites W2050559599 @default.
- W3200304839 cites W2071099763 @default.
- W3200304839 cites W2090065960 @default.
- W3200304839 cites W2102605133 @default.
- W3200304839 cites W2102994171 @default.
- W3200304839 cites W2119162254 @default.
- W3200304839 cites W2137621957 @default.
- W3200304839 cites W2142683286 @default.
- W3200304839 cites W2152537098 @default.
- W3200304839 cites W2164668388 @default.
- W3200304839 cites W2169935136 @default.
- W3200304839 cites W2292676122 @default.
- W3200304839 cites W2465505234 @default.
- W3200304839 cites W2611467245 @default.
- W3200304839 cites W2612688942 @default.
- W3200304839 cites W2614949728 @default.
- W3200304839 cites W2618530766 @default.
- W3200304839 cites W2735811388 @default.
- W3200304839 cites W2751563926 @default.
- W3200304839 cites W2761343114 @default.
- W3200304839 cites W2785345525 @default.
- W3200304839 cites W2793055587 @default.
- W3200304839 cites W2886478634 @default.
- W3200304839 cites W2891104739 @default.
- W3200304839 cites W2905825954 @default.
- W3200304839 cites W2910683834 @default.
- W3200304839 cites W2919115771 @default.
- W3200304839 cites W2945801489 @default.
- W3200304839 cites W2946494981 @default.
- W3200304839 cites W2963008069 @default.
- W3200304839 cites W2964581798 @default.
- W3200304839 cites W2974799347 @default.
- W3200304839 cites W2980245312 @default.
- W3200304839 cites W2998199538 @default.
- W3200304839 cites W3017227440 @default.
- W3200304839 cites W3023499597 @default.
- W3200304839 cites W3098900881 @default.
- W3200304839 cites W3100810380 @default.
- W3200304839 cites W4236537052 @default.
- W3200304839 doi "https://doi.org/10.1080/17455030.2021.1968540" @default.
- W3200304839 hasPublicationYear "2021" @default.
- W3200304839 type Work @default.
- W3200304839 sameAs 3200304839 @default.
- W3200304839 citedByCount "2" @default.
- W3200304839 countsByYear W32003048392022 @default.
- W3200304839 crossrefType "journal-article" @default.
- W3200304839 hasAuthorship W3200304839A5004391089 @default.
- W3200304839 hasAuthorship W3200304839A5056322216 @default.
- W3200304839 hasConcept C104293457 @default.
- W3200304839 hasConcept C108583219 @default.
- W3200304839 hasConcept C11413529 @default.
- W3200304839 hasConcept C115961682 @default.
- W3200304839 hasConcept C120665830 @default.
- W3200304839 hasConcept C121332964 @default.
- W3200304839 hasConcept C134306372 @default.
- W3200304839 hasConcept C135252773 @default.
- W3200304839 hasConcept C141379421 @default.
- W3200304839 hasConcept C145417883 @default.
- W3200304839 hasConcept C153180895 @default.
- W3200304839 hasConcept C154945302 @default.
- W3200304839 hasConcept C179690561 @default.
- W3200304839 hasConcept C31972630 @default.
- W3200304839 hasConcept C33923547 @default.
- W3200304839 hasConcept C41008148 @default.
- W3200304839 hasConcept C55020928 @default.
- W3200304839 hasConcept C99498987 @default.
- W3200304839 hasConceptScore W3200304839C104293457 @default.
- W3200304839 hasConceptScore W3200304839C108583219 @default.
- W3200304839 hasConceptScore W3200304839C11413529 @default.
- W3200304839 hasConceptScore W3200304839C115961682 @default.
- W3200304839 hasConceptScore W3200304839C120665830 @default.
- W3200304839 hasConceptScore W3200304839C121332964 @default.
- W3200304839 hasConceptScore W3200304839C134306372 @default.
- W3200304839 hasConceptScore W3200304839C135252773 @default.
- W3200304839 hasConceptScore W3200304839C141379421 @default.