Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201477029> ?p ?o ?g. }
- W3201477029 abstract "Abstract Drug–target interaction (DTI) prediction is a crucial step in drug discovery and repositioning as it reduces experimental validation costs if done right. Thus, developing in-silico methods to predict potential DTI has become a competitive research niche, with one of its main focuses being improving the prediction accuracy. Using machine learning (ML) models for this task, specifically network-based approaches, is effective and has shown great advantages over the other computational methods. However, ML model development involves upstream hand-crafted feature extraction and other processes that impact prediction accuracy. Thus, network-based representation learning techniques that provide automated feature extraction combined with traditional ML classifiers dealing with downstream link prediction tasks may be better-suited paradigms. Here, we present such a method, DTi2Vec, which identifies DTIs using network representation learning and ensemble learning techniques. DTi2Vec constructs the heterogeneous network, and then it automatically generates features for each drug and target using the nodes embedding technique. DTi2Vec demonstrated its ability in drug–target link prediction compared to several state-of-the-art network-based methods, using four benchmark datasets and large-scale data compiled from DrugBank. DTi2Vec showed a statistically significant increase in the prediction performances in terms of AUPR. We verified the novel predicted DTIs using several databases and scientific literature. DTi2Vec is a simple yet effective method that provides high DTI prediction performance while being scalable and efficient in computation, translating into a powerful drug repositioning tool." @default.
- W3201477029 created "2021-09-27" @default.
- W3201477029 creator A5006656166 @default.
- W3201477029 creator A5009607229 @default.
- W3201477029 creator A5016213975 @default.
- W3201477029 creator A5055569646 @default.
- W3201477029 creator A5067922507 @default.
- W3201477029 creator A5085529612 @default.
- W3201477029 creator A5086374617 @default.
- W3201477029 date "2021-09-22" @default.
- W3201477029 modified "2023-10-17" @default.
- W3201477029 title "DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning" @default.
- W3201477029 cites W1627275720 @default.
- W3201477029 cites W1678356000 @default.
- W3201477029 cites W1970148391 @default.
- W3201477029 cites W1971106435 @default.
- W3201477029 cites W1976526581 @default.
- W3201477029 cites W1982545168 @default.
- W3201477029 cites W1987219048 @default.
- W3201477029 cites W2009313526 @default.
- W3201477029 cites W2020639753 @default.
- W3201477029 cites W2029348196 @default.
- W3201477029 cites W2033906815 @default.
- W3201477029 cites W2046011778 @default.
- W3201477029 cites W2063016658 @default.
- W3201477029 cites W2087007556 @default.
- W3201477029 cites W2108103746 @default.
- W3201477029 cites W2130253098 @default.
- W3201477029 cites W2139736926 @default.
- W3201477029 cites W2142709876 @default.
- W3201477029 cites W2144000913 @default.
- W3201477029 cites W2145561180 @default.
- W3201477029 cites W2149302140 @default.
- W3201477029 cites W2153838454 @default.
- W3201477029 cites W2165674132 @default.
- W3201477029 cites W2167212630 @default.
- W3201477029 cites W2177317049 @default.
- W3201477029 cites W2256553158 @default.
- W3201477029 cites W2259538443 @default.
- W3201477029 cites W2302413701 @default.
- W3201477029 cites W2522920646 @default.
- W3201477029 cites W2558999090 @default.
- W3201477029 cites W2559588208 @default.
- W3201477029 cites W2562531153 @default.
- W3201477029 cites W2576544908 @default.
- W3201477029 cites W2586724023 @default.
- W3201477029 cites W2612835976 @default.
- W3201477029 cites W2739636023 @default.
- W3201477029 cites W2753953057 @default.
- W3201477029 cites W2767891136 @default.
- W3201477029 cites W2770261575 @default.
- W3201477029 cites W2793951981 @default.
- W3201477029 cites W2795214545 @default.
- W3201477029 cites W2888273069 @default.
- W3201477029 cites W2896646632 @default.
- W3201477029 cites W2899210162 @default.
- W3201477029 cites W2899788782 @default.
- W3201477029 cites W2905215896 @default.
- W3201477029 cites W2911932738 @default.
- W3201477029 cites W2915583118 @default.
- W3201477029 cites W2915806464 @default.
- W3201477029 cites W2935632020 @default.
- W3201477029 cites W2946853220 @default.
- W3201477029 cites W2962756421 @default.
- W3201477029 cites W2963722686 @default.
- W3201477029 cites W2982552606 @default.
- W3201477029 cites W2989848927 @default.
- W3201477029 cites W2999554466 @default.
- W3201477029 cites W3003038853 @default.
- W3201477029 cites W3026298573 @default.
- W3201477029 cites W3039465695 @default.
- W3201477029 cites W3044334750 @default.
- W3201477029 cites W3102476541 @default.
- W3201477029 cites W3104097132 @default.
- W3201477029 cites W3131901903 @default.
- W3201477029 doi "https://doi.org/10.1186/s13321-021-00552-w" @default.
- W3201477029 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8459562" @default.
- W3201477029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34551818" @default.
- W3201477029 hasPublicationYear "2021" @default.
- W3201477029 type Work @default.
- W3201477029 sameAs 3201477029 @default.
- W3201477029 citedByCount "20" @default.
- W3201477029 countsByYear W32014770292022 @default.
- W3201477029 countsByYear W32014770292023 @default.
- W3201477029 crossrefType "journal-article" @default.
- W3201477029 hasAuthorship W3201477029A5006656166 @default.
- W3201477029 hasAuthorship W3201477029A5009607229 @default.
- W3201477029 hasAuthorship W3201477029A5016213975 @default.
- W3201477029 hasAuthorship W3201477029A5055569646 @default.
- W3201477029 hasAuthorship W3201477029A5067922507 @default.
- W3201477029 hasAuthorship W3201477029A5085529612 @default.
- W3201477029 hasAuthorship W3201477029A5086374617 @default.
- W3201477029 hasBestOaLocation W32014770291 @default.
- W3201477029 hasConcept C118552586 @default.
- W3201477029 hasConcept C119857082 @default.
- W3201477029 hasConcept C124101348 @default.
- W3201477029 hasConcept C13280743 @default.
- W3201477029 hasConcept C154945302 @default.
- W3201477029 hasConcept C155261790 @default.
- W3201477029 hasConcept C15744967 @default.