Matches in SemOpenAlex for { <https://semopenalex.org/work/W3201701095> ?p ?o ?g. }
- W3201701095 abstract "The increased availability and maturity of head-mounted and wearable devices opens up opportunities for remote communication and collaboration. However, the signal streams provided by these devices (e.g., head pose, hand pose, and gaze direction) do not represent a whole person. One of the main open problems is therefore how to leverage these signals to build faithful representations of the user. In this paper, we propose a method based on variational autoencoders to generate articulated poses of a human skeleton based on noisy streams of head and hand pose. Our approach relies on a model of pose likelihood that is novel and theoretically well-grounded. We demonstrate on publicly available datasets that our method is effective even from very impoverished signals and investigate how pose prediction can be made more accurate and realistic." @default.
- W3201701095 created "2021-10-11" @default.
- W3201701095 creator A5002831957 @default.
- W3201701095 creator A5008956185 @default.
- W3201701095 creator A5044199615 @default.
- W3201701095 creator A5044742014 @default.
- W3201701095 creator A5057406184 @default.
- W3201701095 creator A5088944309 @default.
- W3201701095 date "2021-10-01" @default.
- W3201701095 modified "2023-10-14" @default.
- W3201701095 title "Full-Body Motion from a Single Head-Mounted Device: Generating SMPL Poses from Partial Observations" @default.
- W3201701095 cites W1487977235 @default.
- W3201701095 cites W1509064937 @default.
- W3201701095 cites W1735317348 @default.
- W3201701095 cites W1906662973 @default.
- W3201701095 cites W1943191679 @default.
- W3201701095 cites W1967554269 @default.
- W3201701095 cites W2027247754 @default.
- W3201701095 cites W2039050554 @default.
- W3201701095 cites W2052874370 @default.
- W3201701095 cites W2109351996 @default.
- W3201701095 cites W2115096495 @default.
- W3201701095 cites W2121005842 @default.
- W3201701095 cites W2149276562 @default.
- W3201701095 cites W2469134594 @default.
- W3201701095 cites W2525184802 @default.
- W3201701095 cites W2594167370 @default.
- W3201701095 cites W2606517404 @default.
- W3201701095 cites W2611706523 @default.
- W3201701095 cites W2611932403 @default.
- W3201701095 cites W2781400102 @default.
- W3201701095 cites W2792747672 @default.
- W3201701095 cites W2796301186 @default.
- W3201701095 cites W2800009797 @default.
- W3201701095 cites W2887738788 @default.
- W3201701095 cites W2902149428 @default.
- W3201701095 cites W2949924544 @default.
- W3201701095 cites W2962754033 @default.
- W3201701095 cites W2963165299 @default.
- W3201701095 cites W2963310566 @default.
- W3201701095 cites W2963652194 @default.
- W3201701095 cites W2963791050 @default.
- W3201701095 cites W2963907666 @default.
- W3201701095 cites W2964203186 @default.
- W3201701095 cites W2964222622 @default.
- W3201701095 cites W2968459013 @default.
- W3201701095 cites W2971856312 @default.
- W3201701095 cites W2978956737 @default.
- W3201701095 cites W2982627166 @default.
- W3201701095 cites W2983925976 @default.
- W3201701095 cites W2990837443 @default.
- W3201701095 cites W3004407381 @default.
- W3201701095 cites W3009150298 @default.
- W3201701095 cites W3034938233 @default.
- W3201701095 cites W3035367723 @default.
- W3201701095 cites W3048474702 @default.
- W3201701095 cites W3048665613 @default.
- W3201701095 cites W3092189745 @default.
- W3201701095 cites W3107914916 @default.
- W3201701095 cites W3126786794 @default.
- W3201701095 cites W3128138092 @default.
- W3201701095 cites W4205471895 @default.
- W3201701095 cites W4206566734 @default.
- W3201701095 cites W4231018136 @default.
- W3201701095 cites W4236667477 @default.
- W3201701095 doi "https://doi.org/10.1109/iccv48922.2021.01148" @default.
- W3201701095 hasPublicationYear "2021" @default.
- W3201701095 type Work @default.
- W3201701095 sameAs 3201701095 @default.
- W3201701095 citedByCount "14" @default.
- W3201701095 countsByYear W32017010952022 @default.
- W3201701095 countsByYear W32017010952023 @default.
- W3201701095 crossrefType "proceedings-article" @default.
- W3201701095 hasAuthorship W3201701095A5002831957 @default.
- W3201701095 hasAuthorship W3201701095A5008956185 @default.
- W3201701095 hasAuthorship W3201701095A5044199615 @default.
- W3201701095 hasAuthorship W3201701095A5044742014 @default.
- W3201701095 hasAuthorship W3201701095A5057406184 @default.
- W3201701095 hasAuthorship W3201701095A5088944309 @default.
- W3201701095 hasBestOaLocation W32017010952 @default.
- W3201701095 hasConcept C104114177 @default.
- W3201701095 hasConcept C107457646 @default.
- W3201701095 hasConcept C114793014 @default.
- W3201701095 hasConcept C127313418 @default.
- W3201701095 hasConcept C149635348 @default.
- W3201701095 hasConcept C150594956 @default.
- W3201701095 hasConcept C153083717 @default.
- W3201701095 hasConcept C154945302 @default.
- W3201701095 hasConcept C162324750 @default.
- W3201701095 hasConcept C176217482 @default.
- W3201701095 hasConcept C199360897 @default.
- W3201701095 hasConcept C21547014 @default.
- W3201701095 hasConcept C2779843651 @default.
- W3201701095 hasConcept C2779916870 @default.
- W3201701095 hasConcept C2780312720 @default.
- W3201701095 hasConcept C31972630 @default.
- W3201701095 hasConcept C41008148 @default.
- W3201701095 hasConcept C48007421 @default.
- W3201701095 hasConcept C54290928 @default.
- W3201701095 hasConceptScore W3201701095C104114177 @default.