Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202059497> ?p ?o ?g. }
- W3202059497 abstract "Recent models in developing summarization systems consist of millions of parameters and the model performance is highly dependent on the abundance of training data. While most existing summarization corpora contain data in the order of thousands to one million, generation of large-scale summarization datasets in order of couple of millions is yet to be explored. Practically, more data is better at generalizing the training patterns to unseen data. In this paper, we introduce TLDR9+ –a large-scale summarization dataset– containing over 9 million training instances extracted from Reddit discussion forum ([HTTP]). This dataset is specifically gathered to perform extreme summarization (i.e., generating one-sentence summary in high compression and abstraction) and is more than twice larger than the previously proposed dataset. We go one step further and with the help of human annotations, we distill a more fine-grained dataset by sampling High-Quality instances from TLDR9+ and call it TLDRHQ dataset. We further pinpoint different state-of-the-art summarization models on our proposed datasets." @default.
- W3202059497 created "2021-10-11" @default.
- W3202059497 creator A5028863551 @default.
- W3202059497 creator A5036610566 @default.
- W3202059497 creator A5037219190 @default.
- W3202059497 creator A5072011014 @default.
- W3202059497 date "2021-01-01" @default.
- W3202059497 modified "2023-09-26" @default.
- W3202059497 title "TLDR9+: A Large Scale Resource for Extreme Summarization of Social Media Posts" @default.
- W3202059497 cites W2031738304 @default.
- W3202059497 cites W2251535681 @default.
- W3202059497 cites W2341349540 @default.
- W3202059497 cites W2574535369 @default.
- W3202059497 cites W2606974598 @default.
- W3202059497 cites W2626778328 @default.
- W3202059497 cites W2760781482 @default.
- W3202059497 cites W2799064010 @default.
- W3202059497 cites W2888482885 @default.
- W3202059497 cites W2889518897 @default.
- W3202059497 cites W2890419630 @default.
- W3202059497 cites W2908510526 @default.
- W3202059497 cites W2922073769 @default.
- W3202059497 cites W2953280096 @default.
- W3202059497 cites W2953486306 @default.
- W3202059497 cites W2962788840 @default.
- W3202059497 cites W2963607157 @default.
- W3202059497 cites W2963926728 @default.
- W3202059497 cites W2964121744 @default.
- W3202059497 cites W2970419734 @default.
- W3202059497 cites W2970600560 @default.
- W3202059497 cites W2991605991 @default.
- W3202059497 cites W3023578713 @default.
- W3202059497 cites W3034356621 @default.
- W3202059497 cites W3034532465 @default.
- W3202059497 cites W3034715004 @default.
- W3202059497 cites W3034999214 @default.
- W3202059497 cites W3037528277 @default.
- W3202059497 cites W3093284009 @default.
- W3202059497 cites W3098824823 @default.
- W3202059497 cites W3099396524 @default.
- W3202059497 cites W3100852180 @default.
- W3202059497 cites W3101474014 @default.
- W3202059497 cites W3101600240 @default.
- W3202059497 cites W3101693329 @default.
- W3202059497 cites W3102783139 @default.
- W3202059497 cites W3114063959 @default.
- W3202059497 cites W3119036516 @default.
- W3202059497 cites W3146626586 @default.
- W3202059497 doi "https://doi.org/10.18653/v1/2021.newsum-1.15" @default.
- W3202059497 hasPublicationYear "2021" @default.
- W3202059497 type Work @default.
- W3202059497 sameAs 3202059497 @default.
- W3202059497 citedByCount "4" @default.
- W3202059497 countsByYear W32020594972022 @default.
- W3202059497 countsByYear W32020594972023 @default.
- W3202059497 crossrefType "proceedings-article" @default.
- W3202059497 hasAuthorship W3202059497A5028863551 @default.
- W3202059497 hasAuthorship W3202059497A5036610566 @default.
- W3202059497 hasAuthorship W3202059497A5037219190 @default.
- W3202059497 hasAuthorship W3202059497A5072011014 @default.
- W3202059497 hasBestOaLocation W32020594971 @default.
- W3202059497 hasConcept C106131492 @default.
- W3202059497 hasConcept C111472728 @default.
- W3202059497 hasConcept C121332964 @default.
- W3202059497 hasConcept C124101348 @default.
- W3202059497 hasConcept C124304363 @default.
- W3202059497 hasConcept C134714966 @default.
- W3202059497 hasConcept C136764020 @default.
- W3202059497 hasConcept C138885662 @default.
- W3202059497 hasConcept C140779682 @default.
- W3202059497 hasConcept C154945302 @default.
- W3202059497 hasConcept C170858558 @default.
- W3202059497 hasConcept C23123220 @default.
- W3202059497 hasConcept C2777530160 @default.
- W3202059497 hasConcept C2778755073 @default.
- W3202059497 hasConcept C31972630 @default.
- W3202059497 hasConcept C41008148 @default.
- W3202059497 hasConcept C518677369 @default.
- W3202059497 hasConcept C62520636 @default.
- W3202059497 hasConceptScore W3202059497C106131492 @default.
- W3202059497 hasConceptScore W3202059497C111472728 @default.
- W3202059497 hasConceptScore W3202059497C121332964 @default.
- W3202059497 hasConceptScore W3202059497C124101348 @default.
- W3202059497 hasConceptScore W3202059497C124304363 @default.
- W3202059497 hasConceptScore W3202059497C134714966 @default.
- W3202059497 hasConceptScore W3202059497C136764020 @default.
- W3202059497 hasConceptScore W3202059497C138885662 @default.
- W3202059497 hasConceptScore W3202059497C140779682 @default.
- W3202059497 hasConceptScore W3202059497C154945302 @default.
- W3202059497 hasConceptScore W3202059497C170858558 @default.
- W3202059497 hasConceptScore W3202059497C23123220 @default.
- W3202059497 hasConceptScore W3202059497C2777530160 @default.
- W3202059497 hasConceptScore W3202059497C2778755073 @default.
- W3202059497 hasConceptScore W3202059497C31972630 @default.
- W3202059497 hasConceptScore W3202059497C41008148 @default.
- W3202059497 hasConceptScore W3202059497C518677369 @default.
- W3202059497 hasConceptScore W3202059497C62520636 @default.
- W3202059497 hasLocation W32020594971 @default.
- W3202059497 hasLocation W32020594972 @default.
- W3202059497 hasOpenAccess W3202059497 @default.