Matches in SemOpenAlex for { <https://semopenalex.org/work/W3202638100> ?p ?o ?g. }
- W3202638100 endingPage "119180" @default.
- W3202638100 startingPage "119180" @default.
- W3202638100 abstract "Longitudinal fMRI studies hold great promise for the study of neurodegenerative diseases, development and aging, but realizing their full potential depends on extracting accurate fMRI-based measures of brain function and organization in individual subjects over time. This is especially true for studies of rare, heterogeneous and/or rapidly progressing neurodegenerative diseases. These often involve small samples with heterogeneous functional features, making traditional group-difference analyses of limited utility. One such disease is amyotrophic lateral sclerosis (ALS), a severe disease resulting in extreme loss of motor function and eventual death. Here, we use an advanced individualized task fMRI analysis approach to analyze a rich longitudinal dataset containing 190 hand clench fMRI scans from 16 ALS patients (78 scans) and 22 age-matched healthy controls (112 scans). Specifically, we adopt our cortical surface-based spatial Bayesian general linear model (GLM), which has high power and precision to detect activations in individual subjects, and propose a novel longitudinal extension to leverage information shared across visits. We perform all analyses in native surface space to preserve individual anatomical and functional features. Using mixed-effects models to subsequently study the relationship between size of activation and ALS disease progression, we observe for the first time an inverted U-shaped trajectory of motor activations: at relatively mild motor disability we observe enlarging activations, while at higher levels of motor disability we observe severely diminished activation, reflecting progression toward complete loss of motor function. We further observe distinct trajectories depending on clinical progression rate, with faster progressors exhibiting more extreme changes at an earlier stage of disability. These differential trajectories suggest that initial hyper-activation is likely attributable to loss of inhibitory neurons, rather than functional compensation as earlier assumed. These findings substantially advance scientific understanding of the ALS disease process. This study also provides the first real-world example of how surface-based spatial Bayesian analysis of task fMRI can further scientific understanding of neurodegenerative disease and other phenomena. The surface-based spatial Bayesian GLM is implemented in the BayesfMRI R package." @default.
- W3202638100 created "2021-10-11" @default.
- W3202638100 creator A5003117663 @default.
- W3202638100 creator A5010182234 @default.
- W3202638100 creator A5017520150 @default.
- W3202638100 creator A5024565459 @default.
- W3202638100 creator A5062906939 @default.
- W3202638100 date "2022-07-01" @default.
- W3202638100 modified "2023-10-17" @default.
- W3202638100 title "Longitudinal surface‐based spatial Bayesian GLM reveals complex trajectories of motor neurodegeneration in ALS" @default.
- W3202638100 cites W1848669192 @default.
- W3202638100 cites W1934227857 @default.
- W3202638100 cites W1951724000 @default.
- W3202638100 cites W1964177214 @default.
- W3202638100 cites W1966040959 @default.
- W3202638100 cites W1969105480 @default.
- W3202638100 cites W1969432253 @default.
- W3202638100 cites W1971541410 @default.
- W3202638100 cites W1978592341 @default.
- W3202638100 cites W1980932677 @default.
- W3202638100 cites W1981440793 @default.
- W3202638100 cites W2001535380 @default.
- W3202638100 cites W2007124084 @default.
- W3202638100 cites W2013172379 @default.
- W3202638100 cites W2015259521 @default.
- W3202638100 cites W2027328104 @default.
- W3202638100 cites W2033648990 @default.
- W3202638100 cites W2053241895 @default.
- W3202638100 cites W2058713030 @default.
- W3202638100 cites W2060631631 @default.
- W3202638100 cites W2062518684 @default.
- W3202638100 cites W2070445791 @default.
- W3202638100 cites W2070949043 @default.
- W3202638100 cites W2084862241 @default.
- W3202638100 cites W2085660656 @default.
- W3202638100 cites W2096545952 @default.
- W3202638100 cites W2097524044 @default.
- W3202638100 cites W2098778514 @default.
- W3202638100 cites W2105890305 @default.
- W3202638100 cites W2106090120 @default.
- W3202638100 cites W2111216523 @default.
- W3202638100 cites W2133239174 @default.
- W3202638100 cites W2134879150 @default.
- W3202638100 cites W2136145485 @default.
- W3202638100 cites W2138266733 @default.
- W3202638100 cites W2140668076 @default.
- W3202638100 cites W2148332189 @default.
- W3202638100 cites W2150523249 @default.
- W3202638100 cites W2156236044 @default.
- W3202638100 cites W2226999535 @default.
- W3202638100 cites W2344945222 @default.
- W3202638100 cites W2553175043 @default.
- W3202638100 cites W2560149596 @default.
- W3202638100 cites W2590328111 @default.
- W3202638100 cites W2624503905 @default.
- W3202638100 cites W2739137023 @default.
- W3202638100 cites W2768727455 @default.
- W3202638100 cites W2778854905 @default.
- W3202638100 cites W2791825630 @default.
- W3202638100 cites W2943196131 @default.
- W3202638100 cites W2963357389 @default.
- W3202638100 cites W2991091204 @default.
- W3202638100 cites W2998469511 @default.
- W3202638100 cites W3007260307 @default.
- W3202638100 cites W3014509321 @default.
- W3202638100 cites W3025905552 @default.
- W3202638100 cites W3032707732 @default.
- W3202638100 cites W3049496146 @default.
- W3202638100 cites W3102349129 @default.
- W3202638100 cites W3133730557 @default.
- W3202638100 cites W3162921476 @default.
- W3202638100 cites W4241074797 @default.
- W3202638100 doi "https://doi.org/10.1016/j.neuroimage.2022.119180" @default.
- W3202638100 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35395402" @default.
- W3202638100 hasPublicationYear "2022" @default.
- W3202638100 type Work @default.
- W3202638100 sameAs 3202638100 @default.
- W3202638100 citedByCount "1" @default.
- W3202638100 countsByYear W32026381002023 @default.
- W3202638100 crossrefType "journal-article" @default.
- W3202638100 hasAuthorship W3202638100A5003117663 @default.
- W3202638100 hasAuthorship W3202638100A5010182234 @default.
- W3202638100 hasAuthorship W3202638100A5017520150 @default.
- W3202638100 hasAuthorship W3202638100A5024565459 @default.
- W3202638100 hasAuthorship W3202638100A5062906939 @default.
- W3202638100 hasBestOaLocation W32026381001 @default.
- W3202638100 hasConcept C107673813 @default.
- W3202638100 hasConcept C142724271 @default.
- W3202638100 hasConcept C153083717 @default.
- W3202638100 hasConcept C154945302 @default.
- W3202638100 hasConcept C15744967 @default.
- W3202638100 hasConcept C169760540 @default.
- W3202638100 hasConcept C2776925932 @default.
- W3202638100 hasConcept C2779134260 @default.
- W3202638100 hasConcept C2780596555 @default.
- W3202638100 hasConcept C2988438704 @default.
- W3202638100 hasConcept C41008148 @default.
- W3202638100 hasConcept C71924100 @default.