Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203330189> ?p ?o ?g. }
- W3203330189 abstract "The aging population is primarily affected by Alzheimer’s disease (AD) that is an incurable neurodegenerative disorder. There is a need for an automated efficient technique to diagnose Alzheimer’s in its early stage. Various techniques are used to diagnose AD. EEG and neuroimaging methodologies are widely used to highlight changes in the electrical activity of the brain signals that are helpful for early diagnosis. Parkinson’s disease (PD) is a major neurological disease that results in an average of 50,000 new clinical diagnoses worldwide every year. The voice features are majorly used as the main means to diagnose PD. The major symptoms of PD are loss of intensity, the monotony of loudness and pitch, reduction in stress, unidentified silences, and dysphonia. Even though various innovative models are proposed by explorers about Alzheimer’s and Parkinson’s classification diseases, still there is a need for efficient learning methodologies and techniques. This paper provides a review on using machine learning (ML) together with several feature extraction techniques that is helpful in the early detection of AD with Parkinson’s. The novelty and objective of this study are that the CAD technique is used to improve the accuracy of early diagnosis of AD. The proposed technique depends on the nonlinear process for data dimension reduction, feature removal, and classification using kernel-based support vector machine (SVM) classifiers. The dimension of the input space is radically diminished with kernel methods. As the learning set is labeled, it creates sense to utilize this information to make a dependable method of dropping the input space dimension. The different techniques of ML are explained under the major approaches viz. SVM, artificial neural network (ANN), deep learning (DL), and ensemble methods. A comprehensive assessment is presented at SVM, ANN, and DL approaches for better detection of Alzheimer’s with PD highlighting future insights." @default.
- W3203330189 created "2021-10-11" @default.
- W3203330189 creator A5042751103 @default.
- W3203330189 creator A5062593298 @default.
- W3203330189 date "2021-09-29" @default.
- W3203330189 modified "2023-10-06" @default.
- W3203330189 title "Multiclass recognition of Alzheimer’s and Parkinson’s disease using various machine learning techniques: A study" @default.
- W3203330189 cites W118779735 @default.
- W3203330189 cites W1672221038 @default.
- W3203330189 cites W1948745668 @default.
- W3203330189 cites W1965775572 @default.
- W3203330189 cites W1968285919 @default.
- W3203330189 cites W1968836297 @default.
- W3203330189 cites W1974874858 @default.
- W3203330189 cites W1975527028 @default.
- W3203330189 cites W1980076857 @default.
- W3203330189 cites W1988406745 @default.
- W3203330189 cites W1988727472 @default.
- W3203330189 cites W1989327974 @default.
- W3203330189 cites W1991967321 @default.
- W3203330189 cites W1993144775 @default.
- W3203330189 cites W2001089492 @default.
- W3203330189 cites W2033719735 @default.
- W3203330189 cites W2041537566 @default.
- W3203330189 cites W2071865662 @default.
- W3203330189 cites W2075710390 @default.
- W3203330189 cites W2089846971 @default.
- W3203330189 cites W2118206604 @default.
- W3203330189 cites W2126598020 @default.
- W3203330189 cites W2143826137 @default.
- W3203330189 cites W2148601182 @default.
- W3203330189 cites W2171831801 @default.
- W3203330189 cites W2238108400 @default.
- W3203330189 cites W2485095717 @default.
- W3203330189 cites W2527333635 @default.
- W3203330189 cites W2532852577 @default.
- W3203330189 cites W2533800772 @default.
- W3203330189 cites W2538463008 @default.
- W3203330189 cites W2577234833 @default.
- W3203330189 cites W2581439063 @default.
- W3203330189 cites W2592929672 @default.
- W3203330189 cites W2606546398 @default.
- W3203330189 cites W2614698462 @default.
- W3203330189 cites W2764335641 @default.
- W3203330189 cites W2789865159 @default.
- W3203330189 cites W2793914806 @default.
- W3203330189 cites W2806214600 @default.
- W3203330189 cites W2887590219 @default.
- W3203330189 cites W2889669663 @default.
- W3203330189 cites W2909205746 @default.
- W3203330189 cites W2936296419 @default.
- W3203330189 cites W2939515132 @default.
- W3203330189 cites W2964629181 @default.
- W3203330189 cites W2969944904 @default.
- W3203330189 cites W2973813104 @default.
- W3203330189 cites W2991524019 @default.
- W3203330189 cites W3007077268 @default.
- W3203330189 cites W3026072590 @default.
- W3203330189 cites W3044937183 @default.
- W3203330189 cites W596427627 @default.
- W3203330189 doi "https://doi.org/10.1142/s1793962322500088" @default.
- W3203330189 hasPublicationYear "2021" @default.
- W3203330189 type Work @default.
- W3203330189 sameAs 3203330189 @default.
- W3203330189 citedByCount "6" @default.
- W3203330189 countsByYear W32033301892022 @default.
- W3203330189 countsByYear W32033301892023 @default.
- W3203330189 crossrefType "journal-article" @default.
- W3203330189 hasAuthorship W3203330189A5042751103 @default.
- W3203330189 hasAuthorship W3203330189A5062593298 @default.
- W3203330189 hasConcept C119857082 @default.
- W3203330189 hasConcept C12267149 @default.
- W3203330189 hasConcept C142724271 @default.
- W3203330189 hasConcept C153180895 @default.
- W3203330189 hasConcept C154945302 @default.
- W3203330189 hasConcept C15744967 @default.
- W3203330189 hasConcept C169760540 @default.
- W3203330189 hasConcept C41008148 @default.
- W3203330189 hasConcept C534262118 @default.
- W3203330189 hasConcept C58693492 @default.
- W3203330189 hasConcept C71924100 @default.
- W3203330189 hasConceptScore W3203330189C119857082 @default.
- W3203330189 hasConceptScore W3203330189C12267149 @default.
- W3203330189 hasConceptScore W3203330189C142724271 @default.
- W3203330189 hasConceptScore W3203330189C153180895 @default.
- W3203330189 hasConceptScore W3203330189C154945302 @default.
- W3203330189 hasConceptScore W3203330189C15744967 @default.
- W3203330189 hasConceptScore W3203330189C169760540 @default.
- W3203330189 hasConceptScore W3203330189C41008148 @default.
- W3203330189 hasConceptScore W3203330189C534262118 @default.
- W3203330189 hasConceptScore W3203330189C58693492 @default.
- W3203330189 hasConceptScore W3203330189C71924100 @default.
- W3203330189 hasIssue "01" @default.
- W3203330189 hasLocation W32033301891 @default.
- W3203330189 hasOpenAccess W3203330189 @default.
- W3203330189 hasPrimaryLocation W32033301891 @default.
- W3203330189 hasRelatedWork W1996541855 @default.
- W3203330189 hasRelatedWork W2041399278 @default.
- W3203330189 hasRelatedWork W2056016498 @default.
- W3203330189 hasRelatedWork W2136184105 @default.