Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203673826> ?p ?o ?g. }
- W3203673826 endingPage "135223" @default.
- W3203673826 startingPage "135210" @default.
- W3203673826 abstract "This study proposes an efficient prediction method for coronary heart disease risk based on two deep neural networks trained on well-ordered training datasets. Most real datasets include an irregular subset with higher variance than most data, and predictive models do not learn well from these datasets. While most existing prediction models learned from the whole or randomly sampled training datasets, our suggested method draws up training datasets by separating regular and highly biased subsets to build accurate prediction models. We use a two-step approach to prepare the training dataset: (1) divide the initial training dataset into two groups, commonly distributed and highly biased using Principal Component Analysis, (2) enrich the highly biased group by Variational Autoencoders. Then, two deep neural network classifiers learn from the isolated training groups separately. The well-organized training groups enable a chance to build more accurate prediction models. When predicting the risk of coronary heart disease from the given input, only one appropriate model is selected based on the reconstruction error on the Principal Component Analysis model. Dataset used in this study was collected from the Korean National Health and Nutritional Examination Survey. We have conducted two types of experiments on the dataset. The first one proved how Principal Component Analysis and Variational Autoencoder models of the proposed method improves the performance of a single deep neural network. The second experiment compared the proposed method with existing machine learning algorithms, including Naïve Bayes, Random Forest, K-Nearest Neighbor, Decision Tree, Support Vector Machine, and Adaptive Boosting. The experimental results show that the proposed method outperformed conventional machine learning algorithms by giving the accuracy of 0.892, specificity of 0.840, precision of 0.911, recall of 0.920, f-measure of 0.915, and AUC of 0.882." @default.
- W3203673826 created "2021-10-11" @default.
- W3203673826 creator A5013485138 @default.
- W3203673826 creator A5027433720 @default.
- W3203673826 creator A5043932631 @default.
- W3203673826 creator A5062866307 @default.
- W3203673826 creator A5086201087 @default.
- W3203673826 date "2021-01-01" @default.
- W3203673826 modified "2023-10-11" @default.
- W3203673826 title "An Efficient Prediction Method for Coronary Heart Disease Risk Based on Two Deep Neural Networks Trained on Well-Ordered Training Datasets" @default.
- W3203673826 cites W1171616665 @default.
- W3203673826 cites W1995341919 @default.
- W3203673826 cites W2020643828 @default.
- W3203673826 cites W2032168017 @default.
- W3203673826 cites W2054903578 @default.
- W3203673826 cites W2103914106 @default.
- W3203673826 cites W2131735754 @default.
- W3203673826 cites W2147273498 @default.
- W3203673826 cites W2157825442 @default.
- W3203673826 cites W2340431596 @default.
- W3203673826 cites W2418782939 @default.
- W3203673826 cites W2531733772 @default.
- W3203673826 cites W2750336302 @default.
- W3203673826 cites W2752038267 @default.
- W3203673826 cites W2884370459 @default.
- W3203673826 cites W2906622753 @default.
- W3203673826 cites W2912103796 @default.
- W3203673826 cites W2963963943 @default.
- W3203673826 cites W2966671057 @default.
- W3203673826 cites W2967729586 @default.
- W3203673826 cites W2967912576 @default.
- W3203673826 cites W2982204257 @default.
- W3203673826 cites W2993068218 @default.
- W3203673826 cites W2999376617 @default.
- W3203673826 cites W3001719400 @default.
- W3203673826 cites W3007212997 @default.
- W3203673826 cites W3008785957 @default.
- W3203673826 cites W3012553943 @default.
- W3203673826 cites W3018828627 @default.
- W3203673826 cites W3021925134 @default.
- W3203673826 cites W3102476541 @default.
- W3203673826 cites W3140854437 @default.
- W3203673826 cites W4254751698 @default.
- W3203673826 doi "https://doi.org/10.1109/access.2021.3116974" @default.
- W3203673826 hasPublicationYear "2021" @default.
- W3203673826 type Work @default.
- W3203673826 sameAs 3203673826 @default.
- W3203673826 citedByCount "14" @default.
- W3203673826 countsByYear W32036738262021 @default.
- W3203673826 countsByYear W32036738262022 @default.
- W3203673826 countsByYear W32036738262023 @default.
- W3203673826 crossrefType "journal-article" @default.
- W3203673826 hasAuthorship W3203673826A5013485138 @default.
- W3203673826 hasAuthorship W3203673826A5027433720 @default.
- W3203673826 hasAuthorship W3203673826A5043932631 @default.
- W3203673826 hasAuthorship W3203673826A5062866307 @default.
- W3203673826 hasAuthorship W3203673826A5086201087 @default.
- W3203673826 hasBestOaLocation W32036738261 @default.
- W3203673826 hasConcept C101738243 @default.
- W3203673826 hasConcept C108583219 @default.
- W3203673826 hasConcept C119857082 @default.
- W3203673826 hasConcept C12267149 @default.
- W3203673826 hasConcept C124101348 @default.
- W3203673826 hasConcept C153180895 @default.
- W3203673826 hasConcept C154945302 @default.
- W3203673826 hasConcept C169258074 @default.
- W3203673826 hasConcept C27438332 @default.
- W3203673826 hasConcept C41008148 @default.
- W3203673826 hasConcept C46686674 @default.
- W3203673826 hasConcept C50644808 @default.
- W3203673826 hasConcept C52001869 @default.
- W3203673826 hasConcept C84525736 @default.
- W3203673826 hasConceptScore W3203673826C101738243 @default.
- W3203673826 hasConceptScore W3203673826C108583219 @default.
- W3203673826 hasConceptScore W3203673826C119857082 @default.
- W3203673826 hasConceptScore W3203673826C12267149 @default.
- W3203673826 hasConceptScore W3203673826C124101348 @default.
- W3203673826 hasConceptScore W3203673826C153180895 @default.
- W3203673826 hasConceptScore W3203673826C154945302 @default.
- W3203673826 hasConceptScore W3203673826C169258074 @default.
- W3203673826 hasConceptScore W3203673826C27438332 @default.
- W3203673826 hasConceptScore W3203673826C41008148 @default.
- W3203673826 hasConceptScore W3203673826C46686674 @default.
- W3203673826 hasConceptScore W3203673826C50644808 @default.
- W3203673826 hasConceptScore W3203673826C52001869 @default.
- W3203673826 hasConceptScore W3203673826C84525736 @default.
- W3203673826 hasFunder F4320321001 @default.
- W3203673826 hasFunder F4320322030 @default.
- W3203673826 hasFunder F4320322120 @default.
- W3203673826 hasLocation W32036738261 @default.
- W3203673826 hasOpenAccess W3203673826 @default.
- W3203673826 hasPrimaryLocation W32036738261 @default.
- W3203673826 hasRelatedWork W3127425528 @default.
- W3203673826 hasRelatedWork W3204641204 @default.
- W3203673826 hasRelatedWork W3211546796 @default.
- W3203673826 hasRelatedWork W4200057378 @default.
- W3203673826 hasRelatedWork W4283016678 @default.
- W3203673826 hasRelatedWork W4293069612 @default.