Matches in SemOpenAlex for { <https://semopenalex.org/work/W3208889299> ?p ?o ?g. }
- W3208889299 endingPage "100201" @default.
- W3208889299 startingPage "100201" @default.
- W3208889299 abstract "In this paper we enhance the well-known fifth order WENO shock-capturing scheme by using deep learning techniques. This fine-tuning of an existing algorithm is implemented by training a rather small neural network to modify the smoothness indicators of the WENO scheme in order to improve the numerical results especially at discontinuities. In our approach no further post-processing is needed to ensure the consistency of the method. Moreover, the formal order of accuracy of the resulting scheme can be proven. We demonstrate our findings with the inviscid Burgers’ equation, the Buckley–Leverett equation and the 1-D Euler equations of gas dynamics. Hereby we investigate the classical Sod problem and the Lax problem and show that our novel method outperforms the classical fifth order WENO schemes in simulations where the numerical solution is too diffusive or tends to overshoot at shocks. Finally, the straight-forward extension of the method to two-dimensional problems is included and illustrated using the 2D Burgers’ equation." @default.
- W3208889299 created "2021-11-08" @default.
- W3208889299 creator A5004680692 @default.
- W3208889299 creator A5059041681 @default.
- W3208889299 creator A5080524539 @default.
- W3208889299 date "2021-11-01" @default.
- W3208889299 modified "2023-10-16" @default.
- W3208889299 title "Enhanced fifth order WENO shock-capturing schemes with deep learning" @default.
- W3208889299 cites W1075074235 @default.
- W3208889299 cites W1902857097 @default.
- W3208889299 cites W1975311166 @default.
- W3208889299 cites W1978861884 @default.
- W3208889299 cites W1983195644 @default.
- W3208889299 cites W1984312406 @default.
- W3208889299 cites W1998830482 @default.
- W3208889299 cites W2020679137 @default.
- W3208889299 cites W2021121593 @default.
- W3208889299 cites W2027087330 @default.
- W3208889299 cites W2039150507 @default.
- W3208889299 cites W2044325133 @default.
- W3208889299 cites W2057002010 @default.
- W3208889299 cites W2066501150 @default.
- W3208889299 cites W2069100091 @default.
- W3208889299 cites W2083367386 @default.
- W3208889299 cites W2109801076 @default.
- W3208889299 cites W2121408925 @default.
- W3208889299 cites W2122177687 @default.
- W3208889299 cites W2134833963 @default.
- W3208889299 cites W2170107618 @default.
- W3208889299 cites W2517796513 @default.
- W3208889299 cites W2749028154 @default.
- W3208889299 cites W2770250658 @default.
- W3208889299 cites W2886335158 @default.
- W3208889299 cites W2891039272 @default.
- W3208889299 cites W2898842442 @default.
- W3208889299 cites W2954468002 @default.
- W3208889299 cites W2962996171 @default.
- W3208889299 cites W3000947656 @default.
- W3208889299 cites W3004828050 @default.
- W3208889299 cites W3010292040 @default.
- W3208889299 cites W3016183033 @default.
- W3208889299 cites W3026669735 @default.
- W3208889299 cites W3047281751 @default.
- W3208889299 cites W3093593366 @default.
- W3208889299 cites W3100024803 @default.
- W3208889299 cites W3101260193 @default.
- W3208889299 cites W3180793223 @default.
- W3208889299 cites W4245037559 @default.
- W3208889299 cites W4245425766 @default.
- W3208889299 cites W2765594221 @default.
- W3208889299 doi "https://doi.org/10.1016/j.rinam.2021.100201" @default.
- W3208889299 hasPublicationYear "2021" @default.
- W3208889299 type Work @default.
- W3208889299 sameAs 3208889299 @default.
- W3208889299 citedByCount "7" @default.
- W3208889299 countsByYear W32088892992021 @default.
- W3208889299 countsByYear W32088892992022 @default.
- W3208889299 countsByYear W32088892992023 @default.
- W3208889299 crossrefType "journal-article" @default.
- W3208889299 hasAuthorship W3208889299A5004680692 @default.
- W3208889299 hasAuthorship W3208889299A5059041681 @default.
- W3208889299 hasAuthorship W3208889299A5080524539 @default.
- W3208889299 hasBestOaLocation W32088892991 @default.
- W3208889299 hasConcept C102634674 @default.
- W3208889299 hasConcept C121332964 @default.
- W3208889299 hasConcept C126255220 @default.
- W3208889299 hasConcept C126322002 @default.
- W3208889299 hasConcept C129747778 @default.
- W3208889299 hasConcept C134306372 @default.
- W3208889299 hasConcept C154945302 @default.
- W3208889299 hasConcept C15627037 @default.
- W3208889299 hasConcept C2780323453 @default.
- W3208889299 hasConcept C2781300812 @default.
- W3208889299 hasConcept C28826006 @default.
- W3208889299 hasConcept C33923547 @default.
- W3208889299 hasConcept C38409319 @default.
- W3208889299 hasConcept C41008148 @default.
- W3208889299 hasConcept C50644808 @default.
- W3208889299 hasConcept C62884695 @default.
- W3208889299 hasConcept C71924100 @default.
- W3208889299 hasConcept C74650414 @default.
- W3208889299 hasConcept C76155785 @default.
- W3208889299 hasConcept C77618280 @default.
- W3208889299 hasConcept C86252789 @default.
- W3208889299 hasConcept C93779851 @default.
- W3208889299 hasConceptScore W3208889299C102634674 @default.
- W3208889299 hasConceptScore W3208889299C121332964 @default.
- W3208889299 hasConceptScore W3208889299C126255220 @default.
- W3208889299 hasConceptScore W3208889299C126322002 @default.
- W3208889299 hasConceptScore W3208889299C129747778 @default.
- W3208889299 hasConceptScore W3208889299C134306372 @default.
- W3208889299 hasConceptScore W3208889299C154945302 @default.
- W3208889299 hasConceptScore W3208889299C15627037 @default.
- W3208889299 hasConceptScore W3208889299C2780323453 @default.
- W3208889299 hasConceptScore W3208889299C2781300812 @default.
- W3208889299 hasConceptScore W3208889299C28826006 @default.
- W3208889299 hasConceptScore W3208889299C33923547 @default.
- W3208889299 hasConceptScore W3208889299C38409319 @default.