Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200420670> ?p ?o ?g. }
- W4200420670 endingPage "106714" @default.
- W4200420670 startingPage "106714" @default.
- W4200420670 abstract "This study presents a new modeling technique to estimate the stiffness matrix of a thin-walled beam-joint structure using deep learning. When thin-walled beams meet at joints, significant sectional deformations occur, such as warping and distortion. These deformations should be considered in the one-dimensional beam analysis, but it is difficult to explicitly express the coupling relationships between the beams’ deformations connected at the joint. This study constructed a deep learning-based joint model to predict the stiffness matrix of a higher-order one-dimensional super element that presents the relationships. Our proposition trains the neural network using the eigenvalues and eigenvectors of the joint's reduced stiffness matrix to satisfy the correct number of zero-strain energy modes overcoming the randomly perturbed error of the deep learning. The deep learning-based joint model produced compliance errors mostly within 2% for a given structural system and the maximum error of 4% in the worst case. The newly proposed methodology is expected to be widely applicable to structural problems requiring the stiffness of a reduction model." @default.
- W4200420670 created "2021-12-31" @default.
- W4200420670 creator A5008921675 @default.
- W4200420670 creator A5030107844 @default.
- W4200420670 creator A5032445177 @default.
- W4200420670 creator A5047639239 @default.
- W4200420670 creator A5078173419 @default.
- W4200420670 date "2022-02-01" @default.
- W4200420670 modified "2023-09-26" @default.
- W4200420670 title "Development of deep learning-based joint elements for thin-walled beam structures" @default.
- W4200420670 cites W1498663207 @default.
- W4200420670 cites W1974522388 @default.
- W4200420670 cites W1975953175 @default.
- W4200420670 cites W2000309712 @default.
- W4200420670 cites W2003995777 @default.
- W4200420670 cites W2020631713 @default.
- W4200420670 cites W2039240409 @default.
- W4200420670 cites W2046411375 @default.
- W4200420670 cites W2049937347 @default.
- W4200420670 cites W2053613657 @default.
- W4200420670 cites W2059897830 @default.
- W4200420670 cites W2065785062 @default.
- W4200420670 cites W2071413636 @default.
- W4200420670 cites W2076063813 @default.
- W4200420670 cites W2080673722 @default.
- W4200420670 cites W2083229273 @default.
- W4200420670 cites W2138021034 @default.
- W4200420670 cites W2160957918 @default.
- W4200420670 cites W2165076790 @default.
- W4200420670 cites W2169687210 @default.
- W4200420670 cites W2261676784 @default.
- W4200420670 cites W2263104551 @default.
- W4200420670 cites W2292738798 @default.
- W4200420670 cites W2296609147 @default.
- W4200420670 cites W2342015492 @default.
- W4200420670 cites W2474392655 @default.
- W4200420670 cites W2597626167 @default.
- W4200420670 cites W2598457882 @default.
- W4200420670 cites W2729750142 @default.
- W4200420670 cites W2756283039 @default.
- W4200420670 cites W2761191324 @default.
- W4200420670 cites W2777965033 @default.
- W4200420670 cites W2785071288 @default.
- W4200420670 cites W2787883784 @default.
- W4200420670 cites W2789491785 @default.
- W4200420670 cites W2803594690 @default.
- W4200420670 cites W2885147637 @default.
- W4200420670 cites W2903824361 @default.
- W4200420670 cites W2919115771 @default.
- W4200420670 cites W2939407295 @default.
- W4200420670 cites W2942896733 @default.
- W4200420670 cites W2953832283 @default.
- W4200420670 cites W2979896295 @default.
- W4200420670 cites W2998847955 @default.
- W4200420670 cites W3001396333 @default.
- W4200420670 cites W3003332573 @default.
- W4200420670 cites W3048666078 @default.
- W4200420670 cites W3123883114 @default.
- W4200420670 cites W3127694049 @default.
- W4200420670 cites W4238964445 @default.
- W4200420670 doi "https://doi.org/10.1016/j.compstruc.2021.106714" @default.
- W4200420670 hasPublicationYear "2022" @default.
- W4200420670 type Work @default.
- W4200420670 citedByCount "2" @default.
- W4200420670 countsByYear W42004206702023 @default.
- W4200420670 crossrefType "journal-article" @default.
- W4200420670 hasAuthorship W4200420670A5008921675 @default.
- W4200420670 hasAuthorship W4200420670A5030107844 @default.
- W4200420670 hasAuthorship W4200420670A5032445177 @default.
- W4200420670 hasAuthorship W4200420670A5047639239 @default.
- W4200420670 hasAuthorship W4200420670A5078173419 @default.
- W4200420670 hasBestOaLocation W42004206701 @default.
- W4200420670 hasConcept C106487976 @default.
- W4200420670 hasConcept C108583219 @default.
- W4200420670 hasConcept C121332964 @default.
- W4200420670 hasConcept C127413603 @default.
- W4200420670 hasConcept C135628077 @default.
- W4200420670 hasConcept C14198674 @default.
- W4200420670 hasConcept C154945302 @default.
- W4200420670 hasConcept C157202957 @default.
- W4200420670 hasConcept C158693339 @default.
- W4200420670 hasConcept C159985019 @default.
- W4200420670 hasConcept C168834538 @default.
- W4200420670 hasConcept C18555067 @default.
- W4200420670 hasConcept C192562407 @default.
- W4200420670 hasConcept C2779372316 @default.
- W4200420670 hasConcept C2781415944 @default.
- W4200420670 hasConcept C41008148 @default.
- W4200420670 hasConcept C50644808 @default.
- W4200420670 hasConcept C6213913 @default.
- W4200420670 hasConcept C62520636 @default.
- W4200420670 hasConcept C66938386 @default.
- W4200420670 hasConceptScore W4200420670C106487976 @default.
- W4200420670 hasConceptScore W4200420670C108583219 @default.
- W4200420670 hasConceptScore W4200420670C121332964 @default.
- W4200420670 hasConceptScore W4200420670C127413603 @default.
- W4200420670 hasConceptScore W4200420670C135628077 @default.
- W4200420670 hasConceptScore W4200420670C14198674 @default.