Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210362905> ?p ?o ?g. }
- W4210362905 endingPage "104235" @default.
- W4210362905 startingPage "104235" @default.
- W4210362905 abstract "To model the mechanical response of visco-hyperelastic materials, it is quite common to generalize small deformations responses to finite deformations, which is the main objective of this study. The viscoelastic behavior of hyperelastic materials is modeled in the framework of the multiplicative decomposition of the deformation gradient, which is the generalization of the additive decomposition for small deformations. Based on the second law of thermodynamics, we extend the kinematics, kinetics, and constitutive laws from small to finite deformations based on the well-known three-parameter viscoelastic solid (Zener) model. The constitutive laws are derived in a way that the Clausius-Duhem inequality of thermodynamics is satisfied. We examine both the usual Sidoroff multiplicative decomposition and the reversed one. It is revealed that the reversed multiplicative decomposition can meet the intuitive physical expectations analogous to the small deformation cases, i.e., the stresses in the spring and damper in the Maxwell element are equal, and the dissipated energy in the rheological model equals the work acting on the damper. This is while the Sidoroff multiplicative decomposition does not satisfy these physical expectations, and the results cannot be well interpreted by the second law of thermodynamics as the small deformation cases. To describe the evolution of the irreversible process, we need to introduce a function for the internal dissipation of energy. To this end, we propose a new dissipation function that is inspired by the constitutive behavior of Newtonian fluids. To investigate the model's capability, it is applied to predict the response of elastomers in standard loading conditions over a wide range of strain rates. It is demonstrated that the presented framework can achieve a satisfactory agreement with the mechanical behavior of different visco-hyperelastic materials." @default.
- W4210362905 created "2022-02-08" @default.
- W4210362905 creator A5007287990 @default.
- W4210362905 creator A5022510340 @default.
- W4210362905 creator A5025582941 @default.
- W4210362905 date "2022-04-01" @default.
- W4210362905 modified "2023-10-16" @default.
- W4210362905 title "Investigation of multiplicative decompositions in the form of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si1.svg><mml:mrow><mml:msub><mml:mi mathvariant=bold-italic>F</mml:mi><mml:mi>e</mml:mi></mml:msub><mml:msub><mml:mi mathvariant=bold-italic>F</mml:mi><mml:mi>v</mml:mi></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si2.svg><mml:mrow><mml:msub><mml:mi mathvariant=bold-italic>F</mml:mi><mml:mi>v</mml:mi></…" @default.
- W4210362905 cites W1882529968 @default.
- W4210362905 cites W1963529865 @default.
- W4210362905 cites W1967216580 @default.
- W4210362905 cites W1971823580 @default.
- W4210362905 cites W1972961152 @default.
- W4210362905 cites W1977585701 @default.
- W4210362905 cites W1979701617 @default.
- W4210362905 cites W1991089619 @default.
- W4210362905 cites W1994101272 @default.
- W4210362905 cites W2003904951 @default.
- W4210362905 cites W2012927879 @default.
- W4210362905 cites W2023918219 @default.
- W4210362905 cites W2026491731 @default.
- W4210362905 cites W2035885756 @default.
- W4210362905 cites W2038377201 @default.
- W4210362905 cites W2043509303 @default.
- W4210362905 cites W2045776937 @default.
- W4210362905 cites W2046562370 @default.
- W4210362905 cites W2048084085 @default.
- W4210362905 cites W2052880389 @default.
- W4210362905 cites W2053314603 @default.
- W4210362905 cites W2056398268 @default.
- W4210362905 cites W2063419448 @default.
- W4210362905 cites W2063928991 @default.
- W4210362905 cites W2065141136 @default.
- W4210362905 cites W2066448892 @default.
- W4210362905 cites W2079405767 @default.
- W4210362905 cites W2080291094 @default.
- W4210362905 cites W2082501327 @default.
- W4210362905 cites W2082835621 @default.
- W4210362905 cites W2089141619 @default.
- W4210362905 cites W2089446970 @default.
- W4210362905 cites W2097610413 @default.
- W4210362905 cites W2099414609 @default.
- W4210362905 cites W2109498731 @default.
- W4210362905 cites W2120486607 @default.
- W4210362905 cites W2137254326 @default.
- W4210362905 cites W2139680259 @default.
- W4210362905 cites W2153807301 @default.
- W4210362905 cites W2159715948 @default.
- W4210362905 cites W2245197308 @default.
- W4210362905 cites W2306345955 @default.
- W4210362905 cites W2319699134 @default.
- W4210362905 cites W2323494200 @default.
- W4210362905 cites W2329687153 @default.
- W4210362905 cites W2333951861 @default.
- W4210362905 cites W2334308359 @default.
- W4210362905 cites W2581556362 @default.
- W4210362905 cites W2775232250 @default.
- W4210362905 cites W2790254441 @default.
- W4210362905 cites W2796326870 @default.
- W4210362905 cites W2809398948 @default.
- W4210362905 cites W2972471039 @default.
- W4210362905 cites W2989322783 @default.
- W4210362905 cites W2991162714 @default.
- W4210362905 cites W3087236429 @default.
- W4210362905 cites W3179967757 @default.
- W4210362905 cites W4251047720 @default.
- W4210362905 cites W4253538687 @default.
- W4210362905 cites W4253874936 @default.
- W4210362905 cites W4255851496 @default.
- W4210362905 cites W45896552 @default.
- W4210362905 doi "https://doi.org/10.1016/j.mechmat.2022.104235" @default.
- W4210362905 hasPublicationYear "2022" @default.
- W4210362905 type Work @default.
- W4210362905 citedByCount "4" @default.
- W4210362905 countsByYear W42103629052023 @default.
- W4210362905 crossrefType "journal-article" @default.
- W4210362905 hasAuthorship W4210362905A5007287990 @default.
- W4210362905 hasAuthorship W4210362905A5022510340 @default.
- W4210362905 hasAuthorship W4210362905A5025582941 @default.
- W4210362905 hasConcept C119820323 @default.
- W4210362905 hasConcept C121332964 @default.
- W4210362905 hasConcept C121864883 @default.
- W4210362905 hasConcept C134306372 @default.
- W4210362905 hasConcept C135402231 @default.
- W4210362905 hasConcept C135628077 @default.
- W4210362905 hasConcept C147370603 @default.
- W4210362905 hasConcept C163892269 @default.
- W4210362905 hasConcept C182849566 @default.
- W4210362905 hasConcept C186541917 @default.
- W4210362905 hasConcept C192562407 @default.
- W4210362905 hasConcept C202973686 @default.
- W4210362905 hasConcept C294558 @default.
- W4210362905 hasConcept C33923547 @default.
- W4210362905 hasConcept C42747912 @default.
- W4210362905 hasConcept C72746482 @default.
- W4210362905 hasConcept C97355855 @default.
- W4210362905 hasConcept C99692599 @default.
- W4210362905 hasConceptScore W4210362905C119820323 @default.