Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210369713> ?p ?o ?g. }
- W4210369713 endingPage "105733" @default.
- W4210369713 startingPage "105733" @default.
- W4210369713 abstract "This paper considers a distributed permutation flowshop scheduling problem with sequence-dependent setup times (DPFSP-SDST) to minimize the maximum completion time among the factories. The global economy has enabled large companies to have distributed production centers to become widespread, and effective production scheduling between these centers plays a vital role in the competitiveness of companies. To provide effective scheduling for the DPFSP-SDST, we propose a new mixed-integer linear programming (MILP) model and a new constraint programming (CP) model, which is presented for the first time in literature to the best of our knowledge. As the CP has become a solid competitor to the MILP in the literature, this study aims to exploit the effectiveness of CP to solve such a complex DPFSP-SDST. Since the problem is NP-hard, we also offer an evolution strategy (ES_en) algorithm that employs a self-adaptive scheme to obtain high-quality solutions in a short time. A ruin-and-recreate procedure is also embedded into the developed ES_en. We calibrate the parameters of the proposed ES_en using a design of experiment approach. We also compare the proposed ES_en algorithm's performance with three state-of-the-art metaheuristic algorithms from the literature, i.e., the IG2S (a variant of an iterated greedy algorithm with NEH2_en initialization), IGR (another variant of an iterated greedy algorithm with a restart scheme), and discrete artificial bee colony (DABC) algorithm. A detailed computational experiment is carried out to evaluate the performance of the mathematical models (MILP and CP) and the heuristic algorithms (ES_en, IG2S, IGR, and DABC). A comprehensive benchmark set is generated for the DPFSP-SDST from the well-known PFSP instances from the literature, considering various combinations of jobs, machines, factories, and SDST settings, resulting in 2880 benchmark instances. For 216 out of 240 small-size instances, optimal results are reported by solving the proposed MILP and CP models, whereas time-limited model results are reported for the rest. The computational results show that the CP model outperforms the MILP model in terms of the solution time for small-size instances. Initially, the performance of the heuristic algorithms is verified concerning the optimal results on small-size instances. Then, the performance of the heuristic algorithms is evaluated for large instances. ES_en algorithm significantly outperforms the IG2S, IGR, and DABC algorithms for solving large instances. The computational results show that the proposed ES_en algorithm is robust and provides good-quality solutions for the DPFSP-SDST in a short computational time." @default.
- W4210369713 created "2022-02-08" @default.
- W4210369713 creator A5011342394 @default.
- W4210369713 creator A5015071124 @default.
- W4210369713 creator A5022695566 @default.
- W4210369713 creator A5031968418 @default.
- W4210369713 creator A5041012137 @default.
- W4210369713 date "2022-06-01" @default.
- W4210369713 modified "2023-10-15" @default.
- W4210369713 title "An evolution strategy approach for the distributed permutation flowshop scheduling problem with sequence-dependent setup times" @default.
- W4210369713 cites W1094566788 @default.
- W4210369713 cites W119114865 @default.
- W4210369713 cites W1488422606 @default.
- W4210369713 cites W1977133017 @default.
- W4210369713 cites W1987701417 @default.
- W4210369713 cites W1993433489 @default.
- W4210369713 cites W1999879286 @default.
- W4210369713 cites W2005263984 @default.
- W4210369713 cites W2006751452 @default.
- W4210369713 cites W2011615458 @default.
- W4210369713 cites W2028321901 @default.
- W4210369713 cites W2051324103 @default.
- W4210369713 cites W2062419055 @default.
- W4210369713 cites W2062923083 @default.
- W4210369713 cites W2068003474 @default.
- W4210369713 cites W2068656629 @default.
- W4210369713 cites W2073601282 @default.
- W4210369713 cites W2076009908 @default.
- W4210369713 cites W2090069860 @default.
- W4210369713 cites W2099319456 @default.
- W4210369713 cites W2114927918 @default.
- W4210369713 cites W2125827607 @default.
- W4210369713 cites W2128973482 @default.
- W4210369713 cites W2146219471 @default.
- W4210369713 cites W2146898501 @default.
- W4210369713 cites W2152322909 @default.
- W4210369713 cites W2156391157 @default.
- W4210369713 cites W2162423772 @default.
- W4210369713 cites W2313674342 @default.
- W4210369713 cites W2530577942 @default.
- W4210369713 cites W2557710973 @default.
- W4210369713 cites W2619136867 @default.
- W4210369713 cites W2626429397 @default.
- W4210369713 cites W2737752609 @default.
- W4210369713 cites W2792243022 @default.
- W4210369713 cites W2945158825 @default.
- W4210369713 cites W2981989034 @default.
- W4210369713 cites W3005271088 @default.
- W4210369713 cites W3014645106 @default.
- W4210369713 cites W3023582503 @default.
- W4210369713 cites W3036882732 @default.
- W4210369713 cites W3042300423 @default.
- W4210369713 cites W3046048052 @default.
- W4210369713 cites W3047271760 @default.
- W4210369713 cites W3093826929 @default.
- W4210369713 cites W3098074841 @default.
- W4210369713 cites W3118630579 @default.
- W4210369713 cites W3134940144 @default.
- W4210369713 cites W3191976825 @default.
- W4210369713 cites W3210655573 @default.
- W4210369713 cites W3216589706 @default.
- W4210369713 doi "https://doi.org/10.1016/j.cor.2022.105733" @default.
- W4210369713 hasPublicationYear "2022" @default.
- W4210369713 type Work @default.
- W4210369713 citedByCount "14" @default.
- W4210369713 countsByYear W42103697132022 @default.
- W4210369713 countsByYear W42103697132023 @default.
- W4210369713 crossrefType "journal-article" @default.
- W4210369713 hasAuthorship W4210369713A5011342394 @default.
- W4210369713 hasAuthorship W4210369713A5015071124 @default.
- W4210369713 hasAuthorship W4210369713A5022695566 @default.
- W4210369713 hasAuthorship W4210369713A5031968418 @default.
- W4210369713 hasAuthorship W4210369713A5041012137 @default.
- W4210369713 hasConcept C109718341 @default.
- W4210369713 hasConcept C111919701 @default.
- W4210369713 hasConcept C11413529 @default.
- W4210369713 hasConcept C114466953 @default.
- W4210369713 hasConcept C126255220 @default.
- W4210369713 hasConcept C134306372 @default.
- W4210369713 hasConcept C140479938 @default.
- W4210369713 hasConcept C165696696 @default.
- W4210369713 hasConcept C199360897 @default.
- W4210369713 hasConcept C206729178 @default.
- W4210369713 hasConcept C33923547 @default.
- W4210369713 hasConcept C38652104 @default.
- W4210369713 hasConcept C41008148 @default.
- W4210369713 hasConcept C41045048 @default.
- W4210369713 hasConcept C55416958 @default.
- W4210369713 hasConcept C68387754 @default.
- W4210369713 hasConceptScore W4210369713C109718341 @default.
- W4210369713 hasConceptScore W4210369713C111919701 @default.
- W4210369713 hasConceptScore W4210369713C11413529 @default.
- W4210369713 hasConceptScore W4210369713C114466953 @default.
- W4210369713 hasConceptScore W4210369713C126255220 @default.
- W4210369713 hasConceptScore W4210369713C134306372 @default.
- W4210369713 hasConceptScore W4210369713C140479938 @default.
- W4210369713 hasConceptScore W4210369713C165696696 @default.
- W4210369713 hasConceptScore W4210369713C199360897 @default.