Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210666611> ?p ?o ?g. }
- W4210666611 endingPage "501" @default.
- W4210666611 startingPage "501" @default.
- W4210666611 abstract "The lattice Boltzmann method (LBM) has two key steps: collision and streaming. In a conventional LBM, the streaming is exact, where each distribution function is perfectly shifted to the neighbor node on the uniform mesh arrangement. This advantage may curtail the applicability of the method to problems with complex geometries. To overcome this issue, a high-order meshless interpolation-based approach is proposed to handle the streaming step. Owing to its high accuracy, the radial basis function (RBF) is one of the popular methods used for interpolation. In general, RBF-based approaches suffer from some stability issues, where their stability strongly depends on the shape parameter of the RBF. In the current work, a stabilized RBF approach is used to handle the streaming. The stabilized RBF approach has a weak dependency on the shape parameter, which improves the stability of the method and reduces the dependency of the shape parameter. Both the stabilized RBF method and the streaming of the LBM are used for solving three benchmark problems. The results of the stabilized method and the perfect streaming LBM are compared with analytical solutions or published results. Excellent agreements are observed, with a little advantage for the stabilized approach. Additionally, the computational cost is compared, where a marginal difference is observed in the favor of the streaming of the LBM. In conclusion, one could report that the stabilized method is a viable alternative to the streaming of the LBM in handling both simple and complex geometries." @default.
- W4210666611 created "2022-02-08" @default.
- W4210666611 creator A5023705034 @default.
- W4210666611 creator A5060024603 @default.
- W4210666611 creator A5060928668 @default.
- W4210666611 date "2022-02-04" @default.
- W4210666611 modified "2023-09-26" @default.
- W4210666611 title "Integrating a Stabilized Radial Basis Function Method with Lattice Boltzmann Method" @default.
- W4210666611 cites W1963596278 @default.
- W4210666611 cites W1967293805 @default.
- W4210666611 cites W1971616759 @default.
- W4210666611 cites W1973011555 @default.
- W4210666611 cites W1974465170 @default.
- W4210666611 cites W1977754882 @default.
- W4210666611 cites W1979051322 @default.
- W4210666611 cites W1979103260 @default.
- W4210666611 cites W1979847171 @default.
- W4210666611 cites W1983087692 @default.
- W4210666611 cites W1984684385 @default.
- W4210666611 cites W1986369769 @default.
- W4210666611 cites W1988344382 @default.
- W4210666611 cites W1992417381 @default.
- W4210666611 cites W1999392477 @default.
- W4210666611 cites W2005080006 @default.
- W4210666611 cites W2005541192 @default.
- W4210666611 cites W2006960030 @default.
- W4210666611 cites W2008375818 @default.
- W4210666611 cites W2009420423 @default.
- W4210666611 cites W2012298893 @default.
- W4210666611 cites W2014391389 @default.
- W4210666611 cites W2021041911 @default.
- W4210666611 cites W2023783824 @default.
- W4210666611 cites W2026838161 @default.
- W4210666611 cites W2026933241 @default.
- W4210666611 cites W2030772161 @default.
- W4210666611 cites W2043059585 @default.
- W4210666611 cites W2043230583 @default.
- W4210666611 cites W2052610176 @default.
- W4210666611 cites W2052862855 @default.
- W4210666611 cites W2072582014 @default.
- W4210666611 cites W2075333132 @default.
- W4210666611 cites W2076102979 @default.
- W4210666611 cites W2078670845 @default.
- W4210666611 cites W2079238471 @default.
- W4210666611 cites W2088802448 @default.
- W4210666611 cites W2093904994 @default.
- W4210666611 cites W2111859555 @default.
- W4210666611 cites W2151349103 @default.
- W4210666611 cites W2314159056 @default.
- W4210666611 cites W2334434580 @default.
- W4210666611 cites W2514591620 @default.
- W4210666611 cites W2528998963 @default.
- W4210666611 cites W256981807 @default.
- W4210666611 cites W2688417325 @default.
- W4210666611 cites W2777488937 @default.
- W4210666611 cites W2790333933 @default.
- W4210666611 cites W2882992883 @default.
- W4210666611 cites W2912205040 @default.
- W4210666611 cites W2947518799 @default.
- W4210666611 cites W2972730057 @default.
- W4210666611 cites W2980399313 @default.
- W4210666611 cites W3014550648 @default.
- W4210666611 cites W3132076855 @default.
- W4210666611 cites W3201016327 @default.
- W4210666611 doi "https://doi.org/10.3390/math10030501" @default.
- W4210666611 hasPublicationYear "2022" @default.
- W4210666611 type Work @default.
- W4210666611 citedByCount "0" @default.
- W4210666611 crossrefType "journal-article" @default.
- W4210666611 hasAuthorship W4210666611A5023705034 @default.
- W4210666611 hasAuthorship W4210666611A5060024603 @default.
- W4210666611 hasAuthorship W4210666611A5060928668 @default.
- W4210666611 hasBestOaLocation W42106666111 @default.
- W4210666611 hasConcept C112972136 @default.
- W4210666611 hasConcept C11413529 @default.
- W4210666611 hasConcept C115961682 @default.
- W4210666611 hasConcept C119857082 @default.
- W4210666611 hasConcept C121332964 @default.
- W4210666611 hasConcept C12426560 @default.
- W4210666611 hasConcept C126255220 @default.
- W4210666611 hasConcept C13280743 @default.
- W4210666611 hasConcept C134306372 @default.
- W4210666611 hasConcept C135628077 @default.
- W4210666611 hasConcept C137800194 @default.
- W4210666611 hasConcept C14036430 @default.
- W4210666611 hasConcept C154945302 @default.
- W4210666611 hasConcept C162835735 @default.
- W4210666611 hasConcept C185798385 @default.
- W4210666611 hasConcept C19768560 @default.
- W4210666611 hasConcept C205649164 @default.
- W4210666611 hasConcept C21821499 @default.
- W4210666611 hasConcept C24890656 @default.
- W4210666611 hasConcept C2524010 @default.
- W4210666611 hasConcept C2781204021 @default.
- W4210666611 hasConcept C28826006 @default.
- W4210666611 hasConcept C33923547 @default.
- W4210666611 hasConcept C41008148 @default.
- W4210666611 hasConcept C50644808 @default.