Matches in SemOpenAlex for { <https://semopenalex.org/work/W4210768249> ?p ?o ?g. }
- W4210768249 endingPage "159" @default.
- W4210768249 startingPage "132" @default.
- W4210768249 abstract "Towards the aim of mastering level 5, a fully automated vehicle needs to be equipped with sensors for a 360∘ surround perception of the environment. In addition to this, it is required to anticipate plausible evolutions of the traffic scene such that it is possible to act in time, not just to react in case of emergencies. This way, a safe and smooth driving experience can be guaranteed. The complex spatio-temporal dependencies and high dynamics are some of the biggest challenges for scene prediction. The subtile indications of other drivers’ intentions, which are often intuitively clear to the human driver, require data-driven models such as deep learning techniques. When dealing with uncertainties and making decisions based on noisy or sparse data, deep learning models also show a very robust performance. In this survey, a detailed overview of scene prediction models is presented with a historical approach. A quantitative comparison of the model results reveals the dominance of deep learning methods in current state-of-the-art research in this area, leading to a competition on the cm scale. Moreover, it also shows the problem of inter-model comparison, as many publications do not use standardized test sets. However, it is questionable if such improvements on the cm scale are actually necessary. More effort should be spent in trying to understand varying model performances, identifying if the difference is in the datasets (many simple situations versus many corner cases) or actually an issue of the model itself." @default.
- W4210768249 created "2022-02-08" @default.
- W4210768249 creator A5031217256 @default.
- W4210768249 creator A5039456896 @default.
- W4210768249 creator A5051394730 @default.
- W4210768249 creator A5058588480 @default.
- W4210768249 date "2022-02-01" @default.
- W4210768249 modified "2023-09-26" @default.
- W4210768249 title "A Review on Scene Prediction for Automated Driving" @default.
- W4210768249 cites W1498436455 @default.
- W4210768249 cites W1577509784 @default.
- W4210768249 cites W1966963739 @default.
- W4210768249 cites W1980202415 @default.
- W4210768249 cites W1987691797 @default.
- W4210768249 cites W1995478605 @default.
- W4210768249 cites W2003642326 @default.
- W4210768249 cites W2011931151 @default.
- W4210768249 cites W2012849708 @default.
- W4210768249 cites W2030032449 @default.
- W4210768249 cites W2037079232 @default.
- W4210768249 cites W2040395163 @default.
- W4210768249 cites W2055556996 @default.
- W4210768249 cites W2064675550 @default.
- W4210768249 cites W2084246939 @default.
- W4210768249 cites W2097545165 @default.
- W4210768249 cites W2104806250 @default.
- W4210768249 cites W2105934661 @default.
- W4210768249 cites W2125838338 @default.
- W4210768249 cites W2138997468 @default.
- W4210768249 cites W2139391802 @default.
- W4210768249 cites W2148238513 @default.
- W4210768249 cites W2150066425 @default.
- W4210768249 cites W2151992080 @default.
- W4210768249 cites W2152891050 @default.
- W4210768249 cites W2157331557 @default.
- W4210768249 cites W2162966954 @default.
- W4210768249 cites W2163415743 @default.
- W4210768249 cites W2166813035 @default.
- W4210768249 cites W2311191605 @default.
- W4210768249 cites W2343381408 @default.
- W4210768249 cites W2424778531 @default.
- W4210768249 cites W2519106163 @default.
- W4210768249 cites W2519586580 @default.
- W4210768249 cites W2546655401 @default.
- W4210768249 cites W2559767995 @default.
- W4210768249 cites W2567297805 @default.
- W4210768249 cites W2571810020 @default.
- W4210768249 cites W2580495915 @default.
- W4210768249 cites W2594035753 @default.
- W4210768249 cites W2607296803 @default.
- W4210768249 cites W2765982206 @default.
- W4210768249 cites W2784715585 @default.
- W4210768249 cites W2802519414 @default.
- W4210768249 cites W2807452521 @default.
- W4210768249 cites W2894978157 @default.
- W4210768249 cites W2903871660 @default.
- W4210768249 cites W2940129212 @default.
- W4210768249 cites W2949767467 @default.
- W4210768249 cites W2953303875 @default.
- W4210768249 cites W2955189650 @default.
- W4210768249 cites W2963015987 @default.
- W4210768249 cites W2963309363 @default.
- W4210768249 cites W2963343478 @default.
- W4210768249 cites W2963906196 @default.
- W4210768249 cites W2963914175 @default.
- W4210768249 cites W2963945905 @default.
- W4210768249 cites W2964193755 @default.
- W4210768249 cites W2967177252 @default.
- W4210768249 cites W2976534600 @default.
- W4210768249 cites W2985871763 @default.
- W4210768249 cites W2989851631 @default.
- W4210768249 cites W2991653934 @default.
- W4210768249 cites W2996945478 @default.
- W4210768249 cites W2998313947 @default.
- W4210768249 cites W2999046867 @default.
- W4210768249 cites W3003862857 @default.
- W4210768249 cites W3016826426 @default.
- W4210768249 cites W3034589393 @default.
- W4210768249 cites W3034749137 @default.
- W4210768249 cites W3034782805 @default.
- W4210768249 cites W3034944009 @default.
- W4210768249 cites W3035096461 @default.
- W4210768249 cites W3035574324 @default.
- W4210768249 cites W3035671534 @default.
- W4210768249 cites W3036286896 @default.
- W4210768249 cites W3037376004 @default.
- W4210768249 cites W3041133507 @default.
- W4210768249 cites W3090789587 @default.
- W4210768249 cites W3105115779 @default.
- W4210768249 cites W3106257603 @default.
- W4210768249 cites W3107209377 @default.
- W4210768249 cites W3107552218 @default.
- W4210768249 cites W3108908812 @default.
- W4210768249 cites W3114753236 @default.
- W4210768249 cites W3118587910 @default.
- W4210768249 cites W3123191313 @default.
- W4210768249 cites W3133891980 @default.
- W4210768249 cites W3135533852 @default.