Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213054278> ?p ?o ?g. }
- W4213054278 endingPage "943" @default.
- W4213054278 startingPage "943" @default.
- W4213054278 abstract "Hyperspectral anomaly detection has become an important branch of remote–sensing image processing due to its important theoretical value and wide practical application prospects. However, some anomaly detection methods mainly exploit the spectral feature and do not make full use of spatial features, thus limiting the performance improvement of anomaly detection methods. Here, a novel hyperspectral anomaly detection method, called spectral–spatial complementary decision fusion, is proposed, which combines the spectral and spatial features of a hyperspectral image (HSI). In the spectral dimension, the three–dimensional Hessian matrix was first utilized to obtain three–directional feature images, in which the background pixels of the HSI were suppressed. Then, to more accurately separate the sparse matrix containing the anomaly targets in the three–directional feature images, low–rank and sparse matrix decomposition (LRSMD) with truncated nuclear norm (TNN) was adopted to obtain the sparse matrix. After that, the rough detection map was obtained from the sparse matrix through finding the Mahalanobis distance. In the spatial dimension, two–dimensional attribute filtering was employed to extract the spatial feature of HSI with a smooth background. The spatial weight image was subsequently obtained by fusing the spatial feature image. Finally, to combine the complementary advantages of each dimension, the final detection result was obtained by fusing all rough detection maps and the spatial weighting map. In the experiments, one synthetic dataset and three real–world datasets were used. The visual detection results, the three–dimensional receiver operating characteristic (3D ROC) curve, the corresponding two–dimensional ROC (2D ROC) curves, and the area under the 2D ROC curve (AUC) were utilized as evaluation indicators. Compared with nine state–of–the–art alternative methods, the experimental results demonstrate that the proposed method can achieve effective and excellent anomaly detection results." @default.
- W4213054278 created "2022-02-24" @default.
- W4213054278 creator A5001014826 @default.
- W4213054278 creator A5012679585 @default.
- W4213054278 creator A5016174909 @default.
- W4213054278 creator A5021044130 @default.
- W4213054278 creator A5031563962 @default.
- W4213054278 creator A5062709913 @default.
- W4213054278 date "2022-02-15" @default.
- W4213054278 modified "2023-09-26" @default.
- W4213054278 title "Spectral–Spatial Complementary Decision Fusion for Hyperspectral Anomaly Detection" @default.
- W4213054278 cites W1969698720 @default.
- W4213054278 cites W1971358070 @default.
- W4213054278 cites W1995381449 @default.
- W4213054278 cites W1998872742 @default.
- W4213054278 cites W2004491663 @default.
- W4213054278 cites W2040078680 @default.
- W4213054278 cites W2045770636 @default.
- W4213054278 cites W2047870694 @default.
- W4213054278 cites W2067897118 @default.
- W4213054278 cites W2069959554 @default.
- W4213054278 cites W2073827457 @default.
- W4213054278 cites W2109200236 @default.
- W4213054278 cites W2121058967 @default.
- W4213054278 cites W2124463804 @default.
- W4213054278 cites W2157361621 @default.
- W4213054278 cites W2158340226 @default.
- W4213054278 cites W2163957348 @default.
- W4213054278 cites W2183325870 @default.
- W4213054278 cites W2288752886 @default.
- W4213054278 cites W2295576075 @default.
- W4213054278 cites W2424277038 @default.
- W4213054278 cites W2497075055 @default.
- W4213054278 cites W2529441728 @default.
- W4213054278 cites W2563201381 @default.
- W4213054278 cites W2607289818 @default.
- W4213054278 cites W2740976805 @default.
- W4213054278 cites W2768271161 @default.
- W4213054278 cites W2770790879 @default.
- W4213054278 cites W2792625921 @default.
- W4213054278 cites W2796629918 @default.
- W4213054278 cites W2802866486 @default.
- W4213054278 cites W2804350820 @default.
- W4213054278 cites W2806828799 @default.
- W4213054278 cites W2807662216 @default.
- W4213054278 cites W2911876518 @default.
- W4213054278 cites W2948363198 @default.
- W4213054278 cites W2949079224 @default.
- W4213054278 cites W2972480129 @default.
- W4213054278 cites W2975506318 @default.
- W4213054278 cites W2983563481 @default.
- W4213054278 cites W2995818283 @default.
- W4213054278 cites W2998493545 @default.
- W4213054278 cites W2999721008 @default.
- W4213054278 cites W3008839601 @default.
- W4213054278 cites W3012215621 @default.
- W4213054278 cites W3028138626 @default.
- W4213054278 cites W3029960769 @default.
- W4213054278 cites W3034493263 @default.
- W4213054278 cites W3037942607 @default.
- W4213054278 cites W3087883793 @default.
- W4213054278 cites W3091231798 @default.
- W4213054278 cites W3093800253 @default.
- W4213054278 cites W3112037842 @default.
- W4213054278 cites W3129495293 @default.
- W4213054278 cites W3130972234 @default.
- W4213054278 cites W3153686193 @default.
- W4213054278 cites W3164952570 @default.
- W4213054278 cites W3165733160 @default.
- W4213054278 cites W3202492870 @default.
- W4213054278 cites W3205427328 @default.
- W4213054278 cites W3205581890 @default.
- W4213054278 cites W3206364701 @default.
- W4213054278 cites W3207817117 @default.
- W4213054278 cites W3208061707 @default.
- W4213054278 doi "https://doi.org/10.3390/rs14040943" @default.
- W4213054278 hasPublicationYear "2022" @default.
- W4213054278 type Work @default.
- W4213054278 citedByCount "1" @default.
- W4213054278 countsByYear W42130542782022 @default.
- W4213054278 crossrefType "journal-article" @default.
- W4213054278 hasAuthorship W4213054278A5001014826 @default.
- W4213054278 hasAuthorship W4213054278A5012679585 @default.
- W4213054278 hasAuthorship W4213054278A5016174909 @default.
- W4213054278 hasAuthorship W4213054278A5021044130 @default.
- W4213054278 hasAuthorship W4213054278A5031563962 @default.
- W4213054278 hasAuthorship W4213054278A5062709913 @default.
- W4213054278 hasBestOaLocation W42130542781 @default.
- W4213054278 hasConcept C138885662 @default.
- W4213054278 hasConcept C153180895 @default.
- W4213054278 hasConcept C154945302 @default.
- W4213054278 hasConcept C159078339 @default.
- W4213054278 hasConcept C160633673 @default.
- W4213054278 hasConcept C176641082 @default.
- W4213054278 hasConcept C205649164 @default.
- W4213054278 hasConcept C2776401178 @default.
- W4213054278 hasConcept C31972630 @default.
- W4213054278 hasConcept C33923547 @default.