Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213302043> ?p ?o ?g. }
- W4213302043 abstract "In materials design, supervised learning plays an important role for optimization and inverse modeling of microstructure-property relations. To successfully apply supervised learning models, it is essential to train them on suitable data. Here, suitable means that the data covers the microstructure and property space sufficiently and, especially for optimization and inverse modeling, that the property space is explored broadly. For virtual materials design, typically data is generated by numerical simulations, which implies that data pairs can be sampled on demand at arbitrary locations in microstructure space. However, exploring the space of properties remains challenging. To tackle this problem, interactive learning techniques known as active learning can be applied. The present work is the first that investigates the applicability of the active learning strategy query-by-committee for an efficient property space exploration. Furthermore, an extension to active learning strategies is described, which prevents from exploring regions with properties out of scope (i.e., properties that are physically not meaningful or not reachable by manufacturing processes)." @default.
- W4213302043 created "2022-02-24" @default.
- W4213302043 creator A5005302320 @default.
- W4213302043 creator A5055369180 @default.
- W4213302043 creator A5060159143 @default.
- W4213302043 creator A5061354611 @default.
- W4213302043 creator A5069327998 @default.
- W4213302043 date "2022-02-14" @default.
- W4213302043 modified "2023-10-02" @default.
- W4213302043 title "Efficient Exploration of Microstructure-Property Spaces via Active Learning" @default.
- W4213302043 cites W1595159159 @default.
- W4213302043 cites W1835882583 @default.
- W4213302043 cites W1967692477 @default.
- W4213302043 cites W1980860381 @default.
- W4213302043 cites W1982334919 @default.
- W4213302043 cites W1985101862 @default.
- W4213302043 cites W2003657827 @default.
- W4213302043 cites W2020609646 @default.
- W4213302043 cites W2036136551 @default.
- W4213302043 cites W2043968544 @default.
- W4213302043 cites W2045422729 @default.
- W4213302043 cites W2048464869 @default.
- W4213302043 cites W2048711666 @default.
- W4213302043 cites W2051434435 @default.
- W4213302043 cites W2076350013 @default.
- W4213302043 cites W2080021732 @default.
- W4213302043 cites W2085607286 @default.
- W4213302043 cites W2086221485 @default.
- W4213302043 cites W2093229042 @default.
- W4213302043 cites W2093625674 @default.
- W4213302043 cites W2100495367 @default.
- W4213302043 cites W2127979711 @default.
- W4213302043 cites W2132870739 @default.
- W4213302043 cites W2164720940 @default.
- W4213302043 cites W2189471760 @default.
- W4213302043 cites W2262229344 @default.
- W4213302043 cites W2437591545 @default.
- W4213302043 cites W2471138382 @default.
- W4213302043 cites W2529958128 @default.
- W4213302043 cites W2558921396 @default.
- W4213302043 cites W2597626167 @default.
- W4213302043 cites W2793567271 @default.
- W4213302043 cites W2800080953 @default.
- W4213302043 cites W2889908171 @default.
- W4213302043 cites W2907466830 @default.
- W4213302043 cites W2908723166 @default.
- W4213302043 cites W2912469459 @default.
- W4213302043 cites W2916338083 @default.
- W4213302043 cites W2944383871 @default.
- W4213302043 cites W2945637015 @default.
- W4213302043 cites W2948294415 @default.
- W4213302043 cites W2949071206 @default.
- W4213302043 cites W2978013153 @default.
- W4213302043 cites W2997591727 @default.
- W4213302043 cites W3091857248 @default.
- W4213302043 cites W3103145119 @default.
- W4213302043 cites W3165527339 @default.
- W4213302043 cites W4206038828 @default.
- W4213302043 cites W4206723194 @default.
- W4213302043 cites W4249517230 @default.
- W4213302043 cites W4252861488 @default.
- W4213302043 cites W4254751698 @default.
- W4213302043 cites W4292671739 @default.
- W4213302043 doi "https://doi.org/10.3389/fmats.2021.824441" @default.
- W4213302043 hasPublicationYear "2022" @default.
- W4213302043 type Work @default.
- W4213302043 citedByCount "3" @default.
- W4213302043 countsByYear W42133020432023 @default.
- W4213302043 crossrefType "journal-article" @default.
- W4213302043 hasAuthorship W4213302043A5005302320 @default.
- W4213302043 hasAuthorship W4213302043A5055369180 @default.
- W4213302043 hasAuthorship W4213302043A5060159143 @default.
- W4213302043 hasAuthorship W4213302043A5061354611 @default.
- W4213302043 hasAuthorship W4213302043A5069327998 @default.
- W4213302043 hasBestOaLocation W42133020431 @default.
- W4213302043 hasConcept C111472728 @default.
- W4213302043 hasConcept C111919701 @default.
- W4213302043 hasConcept C119857082 @default.
- W4213302043 hasConcept C126255220 @default.
- W4213302043 hasConcept C134306372 @default.
- W4213302043 hasConcept C135252773 @default.
- W4213302043 hasConcept C138885662 @default.
- W4213302043 hasConcept C154945302 @default.
- W4213302043 hasConcept C189950617 @default.
- W4213302043 hasConcept C199360897 @default.
- W4213302043 hasConcept C207467116 @default.
- W4213302043 hasConcept C2524010 @default.
- W4213302043 hasConcept C2778012447 @default.
- W4213302043 hasConcept C2778572836 @default.
- W4213302043 hasConcept C33923547 @default.
- W4213302043 hasConcept C41008148 @default.
- W4213302043 hasConcept C77967617 @default.
- W4213302043 hasConceptScore W4213302043C111472728 @default.
- W4213302043 hasConceptScore W4213302043C111919701 @default.
- W4213302043 hasConceptScore W4213302043C119857082 @default.
- W4213302043 hasConceptScore W4213302043C126255220 @default.
- W4213302043 hasConceptScore W4213302043C134306372 @default.
- W4213302043 hasConceptScore W4213302043C135252773 @default.
- W4213302043 hasConceptScore W4213302043C138885662 @default.
- W4213302043 hasConceptScore W4213302043C154945302 @default.