Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221061127> ?p ?o ?g. }
- W4221061127 abstract "There is a proven correlation between the severity of dementia and reduced brain volumes. Several studies have attempted to use activity data to estimate brain volume as a means of detecting reduction early; however, raw activity data are not directly interpretable and are unstructured, making them challenging to utilize. Furthermore, in the previous research, brain volume estimates were limited to total brain volume and the investigators were unable to detect reductions in specific regions of the brain that are typically used to characterize disease progression. We aimed to evaluate volume prediction of 116 brain regions through activity data obtained combining time-frequency domain- and unsupervised deep learning-based feature extraction methods. We developed a feature extraction model based on unsupervised deep learning using activity data from the National Health and Nutrition Examination Survey (NHANES) dataset (n = 14,482). Then, we applied the model and the time-frequency domain feature extraction method to the activity data of the Biobank Innovations for chronic Cerebrovascular disease With ALZheimer's disease Study (BICWALZS) datasets (n = 177) to extract activity features. Brain volumes were calculated from the brain magnetic resonance imaging of the BICWALZS dataset and anatomically subdivided into 116 regions. Finally, we fitted linear regression models to estimate each regional volume of the 116 brain areas based on the extracted activity features. Regression models were statistically significant for each region, with an average correlation coefficient of 0.990 ± 0.006. In all brain regions, the correlation was > 0.964. Particularly, regions of the temporal lobe that exhibit characteristic atrophy in the early stages of Alzheimer's disease showed the highest correlation (0.995). Through a combined deep learning-time-frequency domain feature extraction method, we could extract activity features based solely on the activity dataset, without including clinical variables. The findings of this study indicate the possibility of using activity data for the detection of neurological disorders such as Alzheimer's disease." @default.
- W4221061127 created "2022-04-03" @default.
- W4221061127 creator A5000314654 @default.
- W4221061127 creator A5013003753 @default.
- W4221061127 creator A5021596397 @default.
- W4221061127 creator A5029038125 @default.
- W4221061127 creator A5032711040 @default.
- W4221061127 creator A5035456076 @default.
- W4221061127 creator A5037061354 @default.
- W4221061127 creator A5084580434 @default.
- W4221061127 creator A5086981804 @default.
- W4221061127 date "2022-03-09" @default.
- W4221061127 modified "2023-09-26" @default.
- W4221061127 title "Modeling Brain Volume Using Deep Learning-Based Physical Activity Features in Patients With Dementia" @default.
- W4221061127 cites W1527181082 @default.
- W4221061127 cites W1730339586 @default.
- W4221061127 cites W1962263973 @default.
- W4221061127 cites W1963916234 @default.
- W4221061127 cites W1964081832 @default.
- W4221061127 cites W1970567308 @default.
- W4221061127 cites W1991952617 @default.
- W4221061127 cites W2012582740 @default.
- W4221061127 cites W2031983299 @default.
- W4221061127 cites W2036864541 @default.
- W4221061127 cites W2039272415 @default.
- W4221061127 cites W2052226124 @default.
- W4221061127 cites W2067722007 @default.
- W4221061127 cites W2069928051 @default.
- W4221061127 cites W2079484785 @default.
- W4221061127 cites W2086199715 @default.
- W4221061127 cites W2090341731 @default.
- W4221061127 cites W2100495367 @default.
- W4221061127 cites W2101135654 @default.
- W4221061127 cites W2119848633 @default.
- W4221061127 cites W2122538988 @default.
- W4221061127 cites W2125657871 @default.
- W4221061127 cites W2129047299 @default.
- W4221061127 cites W2132247422 @default.
- W4221061127 cites W2140542463 @default.
- W4221061127 cites W2142367912 @default.
- W4221061127 cites W2154170073 @default.
- W4221061127 cites W2155164847 @default.
- W4221061127 cites W2159476919 @default.
- W4221061127 cites W2254797072 @default.
- W4221061127 cites W2468595961 @default.
- W4221061127 cites W2928542791 @default.
- W4221061127 cites W2935721701 @default.
- W4221061127 cites W3002553050 @default.
- W4221061127 cites W3012755169 @default.
- W4221061127 cites W3027896923 @default.
- W4221061127 doi "https://doi.org/10.3389/fninf.2022.795171" @default.
- W4221061127 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35356447" @default.
- W4221061127 hasPublicationYear "2022" @default.
- W4221061127 type Work @default.
- W4221061127 citedByCount "2" @default.
- W4221061127 countsByYear W42210611272022 @default.
- W4221061127 countsByYear W42210611272023 @default.
- W4221061127 crossrefType "journal-article" @default.
- W4221061127 hasAuthorship W4221061127A5000314654 @default.
- W4221061127 hasAuthorship W4221061127A5013003753 @default.
- W4221061127 hasAuthorship W4221061127A5021596397 @default.
- W4221061127 hasAuthorship W4221061127A5029038125 @default.
- W4221061127 hasAuthorship W4221061127A5032711040 @default.
- W4221061127 hasAuthorship W4221061127A5035456076 @default.
- W4221061127 hasAuthorship W4221061127A5037061354 @default.
- W4221061127 hasAuthorship W4221061127A5084580434 @default.
- W4221061127 hasAuthorship W4221061127A5086981804 @default.
- W4221061127 hasBestOaLocation W42210611271 @default.
- W4221061127 hasConcept C105795698 @default.
- W4221061127 hasConcept C108583219 @default.
- W4221061127 hasConcept C117220453 @default.
- W4221061127 hasConcept C119857082 @default.
- W4221061127 hasConcept C126838900 @default.
- W4221061127 hasConcept C138885662 @default.
- W4221061127 hasConcept C142724271 @default.
- W4221061127 hasConcept C143409427 @default.
- W4221061127 hasConcept C153180895 @default.
- W4221061127 hasConcept C154945302 @default.
- W4221061127 hasConcept C15744967 @default.
- W4221061127 hasConcept C169760540 @default.
- W4221061127 hasConcept C2524010 @default.
- W4221061127 hasConcept C2776401178 @default.
- W4221061127 hasConcept C2779134260 @default.
- W4221061127 hasConcept C2779483572 @default.
- W4221061127 hasConcept C2780092901 @default.
- W4221061127 hasConcept C2781172350 @default.
- W4221061127 hasConcept C33923547 @default.
- W4221061127 hasConcept C41008148 @default.
- W4221061127 hasConcept C41895202 @default.
- W4221061127 hasConcept C48921125 @default.
- W4221061127 hasConcept C58693492 @default.
- W4221061127 hasConcept C65835030 @default.
- W4221061127 hasConcept C71924100 @default.
- W4221061127 hasConcept C8038995 @default.
- W4221061127 hasConcept C83546350 @default.
- W4221061127 hasConceptScore W4221061127C105795698 @default.
- W4221061127 hasConceptScore W4221061127C108583219 @default.
- W4221061127 hasConceptScore W4221061127C117220453 @default.
- W4221061127 hasConceptScore W4221061127C119857082 @default.
- W4221061127 hasConceptScore W4221061127C126838900 @default.