Matches in SemOpenAlex for { <https://semopenalex.org/work/W4221090147> ?p ?o ?g. }
- W4221090147 endingPage "1200" @default.
- W4221090147 startingPage "1187" @default.
- W4221090147 abstract "Many biomedical studies collect data of mixed types of variables from multiple groups of subjects. Some of these studies aim to find the group-specific and the common variation among all these variables. Even though similar problems have been studied by some previous works, their methods mainly rely on the Pearson correlation, which cannot handle mixed data. To address this issue, we propose a latent mixed Gaussian copula (LMGC) model that can quantify the correlations among binary, ordinal, continuous, and truncated variables in a unified framework. We also provide a tool to decompose the variation into the group-specific and the common variation over multiple groups via solving a regularized M-estimation problem. We conduct extensive simulation studies to show the advantage of our proposed method over the Pearson correlation-based methods. We also demonstrate that by jointly solving the M-estimation problem over multiple groups, our method is better than decomposing the variation group by group. We also apply our method to a Chlamydia trachomatis genital tract infection study to demonstrate how it can be used to discover informative biomarkers that differentiate patients." @default.
- W4221090147 created "2022-04-03" @default.
- W4221090147 creator A5023002726 @default.
- W4221090147 creator A5047262526 @default.
- W4221090147 creator A5070820810 @default.
- W4221090147 creator A5083764812 @default.
- W4221090147 date "2022-03-30" @default.
- W4221090147 modified "2023-10-17" @default.
- W4221090147 title "Decomposition of variation of mixed variables by a latent mixed Gaussian copula model" @default.
- W4221090147 cites W1495663238 @default.
- W4221090147 cites W1593060747 @default.
- W4221090147 cites W1832604395 @default.
- W4221090147 cites W1893333638 @default.
- W4221090147 cites W2005428616 @default.
- W4221090147 cites W2019163875 @default.
- W4221090147 cites W2058767522 @default.
- W4221090147 cites W2065760681 @default.
- W4221090147 cites W2082473379 @default.
- W4221090147 cites W2093949724 @default.
- W4221090147 cites W2095898243 @default.
- W4221090147 cites W2099388546 @default.
- W4221090147 cites W2100697281 @default.
- W4221090147 cites W2108156593 @default.
- W4221090147 cites W2111627808 @default.
- W4221090147 cites W2129256542 @default.
- W4221090147 cites W2131294003 @default.
- W4221090147 cites W2134332047 @default.
- W4221090147 cites W2138485499 @default.
- W4221090147 cites W2142316424 @default.
- W4221090147 cites W2157979130 @default.
- W4221090147 cites W2165133998 @default.
- W4221090147 cites W2328872196 @default.
- W4221090147 cites W2605944716 @default.
- W4221090147 cites W2611328865 @default.
- W4221090147 cites W2764251734 @default.
- W4221090147 cites W2775488773 @default.
- W4221090147 cites W2792341545 @default.
- W4221090147 cites W2905533385 @default.
- W4221090147 cites W2916417447 @default.
- W4221090147 cites W2918524003 @default.
- W4221090147 cites W2949124855 @default.
- W4221090147 cites W2950126918 @default.
- W4221090147 cites W2963340261 @default.
- W4221090147 cites W2964053582 @default.
- W4221090147 cites W3005097955 @default.
- W4221090147 cites W3016700505 @default.
- W4221090147 cites W3200081940 @default.
- W4221090147 doi "https://doi.org/10.1111/biom.13660" @default.
- W4221090147 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35304917" @default.
- W4221090147 hasPublicationYear "2022" @default.
- W4221090147 type Work @default.
- W4221090147 citedByCount "1" @default.
- W4221090147 crossrefType "journal-article" @default.
- W4221090147 hasAuthorship W4221090147A5023002726 @default.
- W4221090147 hasAuthorship W4221090147A5047262526 @default.
- W4221090147 hasAuthorship W4221090147A5070820810 @default.
- W4221090147 hasAuthorship W4221090147A5083764812 @default.
- W4221090147 hasConcept C105795698 @default.
- W4221090147 hasConcept C117220453 @default.
- W4221090147 hasConcept C121332964 @default.
- W4221090147 hasConcept C149782125 @default.
- W4221090147 hasConcept C16012445 @default.
- W4221090147 hasConcept C161584116 @default.
- W4221090147 hasConcept C163716315 @default.
- W4221090147 hasConcept C17618745 @default.
- W4221090147 hasConcept C2524010 @default.
- W4221090147 hasConcept C2778334786 @default.
- W4221090147 hasConcept C33923547 @default.
- W4221090147 hasConcept C41008148 @default.
- W4221090147 hasConcept C44870925 @default.
- W4221090147 hasConcept C51167844 @default.
- W4221090147 hasConcept C55078378 @default.
- W4221090147 hasConcept C61224824 @default.
- W4221090147 hasConcept C62520636 @default.
- W4221090147 hasConceptScore W4221090147C105795698 @default.
- W4221090147 hasConceptScore W4221090147C117220453 @default.
- W4221090147 hasConceptScore W4221090147C121332964 @default.
- W4221090147 hasConceptScore W4221090147C149782125 @default.
- W4221090147 hasConceptScore W4221090147C16012445 @default.
- W4221090147 hasConceptScore W4221090147C161584116 @default.
- W4221090147 hasConceptScore W4221090147C163716315 @default.
- W4221090147 hasConceptScore W4221090147C17618745 @default.
- W4221090147 hasConceptScore W4221090147C2524010 @default.
- W4221090147 hasConceptScore W4221090147C2778334786 @default.
- W4221090147 hasConceptScore W4221090147C33923547 @default.
- W4221090147 hasConceptScore W4221090147C41008148 @default.
- W4221090147 hasConceptScore W4221090147C44870925 @default.
- W4221090147 hasConceptScore W4221090147C51167844 @default.
- W4221090147 hasConceptScore W4221090147C55078378 @default.
- W4221090147 hasConceptScore W4221090147C61224824 @default.
- W4221090147 hasConceptScore W4221090147C62520636 @default.
- W4221090147 hasFunder F4320332161 @default.
- W4221090147 hasFunder F4320337337 @default.
- W4221090147 hasIssue "2" @default.
- W4221090147 hasLocation W42210901471 @default.
- W4221090147 hasLocation W42210901472 @default.
- W4221090147 hasOpenAccess W4221090147 @default.
- W4221090147 hasPrimaryLocation W42210901471 @default.