Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225492775> ?p ?o ?g. }
- W4225492775 endingPage "1" @default.
- W4225492775 startingPage "1" @default.
- W4225492775 abstract "With the explosive growth of short texts on users' preferences, learning discriminative and coherent latent topics from short texts is a critical work, since many practical applications require semantic understandings that short texts convey explicitly and implicitly. However, existing short text topic learning methods face the challenge of fully capturing semantically related co-occurrence phrases. Therefore, this paper proposes a novel Heterogeneous Information Network-based Short Text Topic learning approach (HIN-ShoTT) in terms of parts of speech, without depending on any auxiliary information. Specifically, HIN-ShoTT can be decomposed into three phases: i) seeking semantic relations among words, where HIN-ShoTT models multiple semantic relations among words based on a Heterogeneous Information Network (HIN) in terms of parts of speech; ii) extracting co-occurrence phrases and filtering noises, where HIN-ShoTT defines parts-of-speech meta structures to guide co-occurrence phrase extraction and a self-adapting threshold filtering module is proposed for discarding noises; and iii) inferring topics, where HIN-ShoTT models the generative process of co-occurrence phrases to make topic learning effective with the abundant corpus-level information. Our experimental results on three real-world datasets not only show that HIN-ShoTT performs well, but also demonstrate that it is feasible to incorporate HIN into short text topic learning for accuracy improvement." @default.
- W4225492775 created "2022-05-05" @default.
- W4225492775 creator A5004494857 @default.
- W4225492775 creator A5016260066 @default.
- W4225492775 creator A5045343824 @default.
- W4225492775 creator A5051706630 @default.
- W4225492775 creator A5059697520 @default.
- W4225492775 creator A5070245791 @default.
- W4225492775 date "2022-01-01" @default.
- W4225492775 modified "2023-10-16" @default.
- W4225492775 title "Short Text Topic Learning Using Heterogeneous Information Network" @default.
- W4225492775 cites W103340358 @default.
- W4225492775 cites W1581604130 @default.
- W4225492775 cites W1902027874 @default.
- W4225492775 cites W1977998106 @default.
- W4225492775 cites W2004192095 @default.
- W4225492775 cites W2005098805 @default.
- W4225492775 cites W2029249040 @default.
- W4225492775 cites W2047729491 @default.
- W4225492775 cites W2048195127 @default.
- W4225492775 cites W2061922307 @default.
- W4225492775 cites W2063904635 @default.
- W4225492775 cites W2064772995 @default.
- W4225492775 cites W2075010670 @default.
- W4225492775 cites W2076219102 @default.
- W4225492775 cites W2139317750 @default.
- W4225492775 cites W2168332560 @default.
- W4225492775 cites W2171836785 @default.
- W4225492775 cites W2251410829 @default.
- W4225492775 cites W2328995640 @default.
- W4225492775 cites W2340381866 @default.
- W4225492775 cites W2354939339 @default.
- W4225492775 cites W2573074123 @default.
- W4225492775 cites W2617704558 @default.
- W4225492775 cites W2626127376 @default.
- W4225492775 cites W2743159750 @default.
- W4225492775 cites W2745475103 @default.
- W4225492775 cites W2771594808 @default.
- W4225492775 cites W2788615138 @default.
- W4225492775 cites W2896367309 @default.
- W4225492775 cites W2897676029 @default.
- W4225492775 cites W2906834561 @default.
- W4225492775 cites W2963919031 @default.
- W4225492775 cites W2979208245 @default.
- W4225492775 cites W2983339844 @default.
- W4225492775 cites W3021053579 @default.
- W4225492775 cites W3103615620 @default.
- W4225492775 cites W3154475157 @default.
- W4225492775 cites W3169551350 @default.
- W4225492775 cites W3189626311 @default.
- W4225492775 cites W4233135949 @default.
- W4225492775 cites W54840291 @default.
- W4225492775 cites W93608020 @default.
- W4225492775 doi "https://doi.org/10.1109/tkde.2022.3147766" @default.
- W4225492775 hasPublicationYear "2022" @default.
- W4225492775 type Work @default.
- W4225492775 citedByCount "4" @default.
- W4225492775 countsByYear W42254927752022 @default.
- W4225492775 countsByYear W42254927752023 @default.
- W4225492775 crossrefType "journal-article" @default.
- W4225492775 hasAuthorship W4225492775A5004494857 @default.
- W4225492775 hasAuthorship W4225492775A5016260066 @default.
- W4225492775 hasAuthorship W4225492775A5045343824 @default.
- W4225492775 hasAuthorship W4225492775A5051706630 @default.
- W4225492775 hasAuthorship W4225492775A5059697520 @default.
- W4225492775 hasAuthorship W4225492775A5070245791 @default.
- W4225492775 hasConcept C111919701 @default.
- W4225492775 hasConcept C154945302 @default.
- W4225492775 hasConcept C171686336 @default.
- W4225492775 hasConcept C204321447 @default.
- W4225492775 hasConcept C2776224158 @default.
- W4225492775 hasConcept C39890363 @default.
- W4225492775 hasConcept C41008148 @default.
- W4225492775 hasConcept C97931131 @default.
- W4225492775 hasConcept C98045186 @default.
- W4225492775 hasConceptScore W4225492775C111919701 @default.
- W4225492775 hasConceptScore W4225492775C154945302 @default.
- W4225492775 hasConceptScore W4225492775C171686336 @default.
- W4225492775 hasConceptScore W4225492775C204321447 @default.
- W4225492775 hasConceptScore W4225492775C2776224158 @default.
- W4225492775 hasConceptScore W4225492775C39890363 @default.
- W4225492775 hasConceptScore W4225492775C41008148 @default.
- W4225492775 hasConceptScore W4225492775C97931131 @default.
- W4225492775 hasConceptScore W4225492775C98045186 @default.
- W4225492775 hasFunder F4320321001 @default.
- W4225492775 hasFunder F4320334897 @default.
- W4225492775 hasLocation W42254927751 @default.
- W4225492775 hasOpenAccess W4225492775 @default.
- W4225492775 hasPrimaryLocation W42254927751 @default.
- W4225492775 hasRelatedWork W2153315159 @default.
- W4225492775 hasRelatedWork W259157601 @default.
- W4225492775 hasRelatedWork W2593887162 @default.
- W4225492775 hasRelatedWork W2751624083 @default.
- W4225492775 hasRelatedWork W2965546495 @default.
- W4225492775 hasRelatedWork W2987280934 @default.
- W4225492775 hasRelatedWork W3103844505 @default.
- W4225492775 hasRelatedWork W4205463238 @default.
- W4225492775 hasRelatedWork W4281766347 @default.