Matches in SemOpenAlex for { <https://semopenalex.org/work/W4225677148> ?p ?o ?g. }
- W4225677148 endingPage "45662" @default.
- W4225677148 startingPage "45643" @default.
- W4225677148 abstract "This paper investigates applying artificial intelligence (AI) algorithms to attitude control system of satellites to optimally tune the controller using high performance computing. This methodology is applied to the Virtual Telescope for X-ray Observation mission, which is a precise formation of two separate spacecraft observing multiple objects in the space in the X-ray domain. The mission is divided into phases based on the instrumentation and the mission goal. To reach an stable precise formation robust to stochastic slew and slew rate (i.e., Euler angles and angular velocities) in a minimal constrained time <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$T$ </tex-math></inline-formula> , consumed energy of the attitude control system, denoted as <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$E$ </tex-math></inline-formula> , and root-mean-square state error of attitude control system, denoted as <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$e$ </tex-math></inline-formula> , are minimized. Monte-Carlo simulation is used for the sensitivity analysis of optimization and designing a controller. Deep neural networks (DNN), Gaussian processes (GP), and support vector regression (SVR) learn this optimization as a surrogate model, while their hyperparameters are optimized in a novel approach. THETA supercomputer at Argonne Leadership Computing Facility (ALCF) is used for optimizing the hyperparameters of DNN. The surrogate model meets the requirements of the mission, and it shows a better performance over the optimization and Monte-Carlo. The optimal DNN can satisfy the mission requirements <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$e$ </tex-math></inline-formula> and <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$T$ </tex-math></inline-formula> while reducing <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$E$ </tex-math></inline-formula> for 90% compared to the other given methods." @default.
- W4225677148 created "2022-05-05" @default.
- W4225677148 creator A5021479391 @default.
- W4225677148 creator A5024249522 @default.
- W4225677148 creator A5043149524 @default.
- W4225677148 creator A5051550258 @default.
- W4225677148 creator A5081201592 @default.
- W4225677148 date "2022-01-01" @default.
- W4225677148 modified "2023-09-27" @default.
- W4225677148 title "Designing Monte Carlo Simulation and an Optimal Machine Learning to Optimize and Model Space Missions" @default.
- W4225677148 cites W1510073064 @default.
- W4225677148 cites W1517236425 @default.
- W4225677148 cites W1572455494 @default.
- W4225677148 cites W1969477036 @default.
- W4225677148 cites W1987563485 @default.
- W4225677148 cites W2008217681 @default.
- W4225677148 cites W2019749948 @default.
- W4225677148 cites W2040490326 @default.
- W4225677148 cites W2049945366 @default.
- W4225677148 cites W2053161982 @default.
- W4225677148 cites W2054738079 @default.
- W4225677148 cites W2061822593 @default.
- W4225677148 cites W2065574975 @default.
- W4225677148 cites W2069037813 @default.
- W4225677148 cites W2076578526 @default.
- W4225677148 cites W2082987949 @default.
- W4225677148 cites W2099050635 @default.
- W4225677148 cites W2121310840 @default.
- W4225677148 cites W2142700061 @default.
- W4225677148 cites W2143833219 @default.
- W4225677148 cites W2339485419 @default.
- W4225677148 cites W2395992080 @default.
- W4225677148 cites W2537758427 @default.
- W4225677148 cites W2546070262 @default.
- W4225677148 cites W2581741973 @default.
- W4225677148 cites W2606682543 @default.
- W4225677148 cites W2608040748 @default.
- W4225677148 cites W2614379930 @default.
- W4225677148 cites W2729150869 @default.
- W4225677148 cites W2758761781 @default.
- W4225677148 cites W2773022275 @default.
- W4225677148 cites W2781878788 @default.
- W4225677148 cites W2793010390 @default.
- W4225677148 cites W2804141586 @default.
- W4225677148 cites W2811443445 @default.
- W4225677148 cites W2883893126 @default.
- W4225677148 cites W2913525628 @default.
- W4225677148 cites W2942605883 @default.
- W4225677148 cites W2945195863 @default.
- W4225677148 cites W2963711014 @default.
- W4225677148 cites W2964275135 @default.
- W4225677148 cites W2970421330 @default.
- W4225677148 cites W2972481755 @default.
- W4225677148 cites W2980670437 @default.
- W4225677148 cites W2986145627 @default.
- W4225677148 cites W2997777794 @default.
- W4225677148 cites W3012125688 @default.
- W4225677148 cites W3015432391 @default.
- W4225677148 cites W3035278585 @default.
- W4225677148 cites W3097559709 @default.
- W4225677148 cites W3148609646 @default.
- W4225677148 cites W3211163084 @default.
- W4225677148 cites W4206135700 @default.
- W4225677148 cites W4214489733 @default.
- W4225677148 cites W636927631 @default.
- W4225677148 doi "https://doi.org/10.1109/access.2022.3170438" @default.
- W4225677148 hasPublicationYear "2022" @default.
- W4225677148 type Work @default.
- W4225677148 citedByCount "1" @default.
- W4225677148 countsByYear W42256771482022 @default.
- W4225677148 crossrefType "journal-article" @default.
- W4225677148 hasAuthorship W4225677148A5021479391 @default.
- W4225677148 hasAuthorship W4225677148A5024249522 @default.
- W4225677148 hasAuthorship W4225677148A5043149524 @default.
- W4225677148 hasAuthorship W4225677148A5051550258 @default.
- W4225677148 hasAuthorship W4225677148A5081201592 @default.
- W4225677148 hasBestOaLocation W42256771481 @default.
- W4225677148 hasConcept C105795698 @default.
- W4225677148 hasConcept C11413529 @default.
- W4225677148 hasConcept C154945302 @default.
- W4225677148 hasConcept C19499675 @default.
- W4225677148 hasConcept C203479927 @default.
- W4225677148 hasConcept C33923547 @default.
- W4225677148 hasConcept C41008148 @default.
- W4225677148 hasConcept C6557445 @default.
- W4225677148 hasConcept C86803240 @default.
- W4225677148 hasConceptScore W4225677148C105795698 @default.
- W4225677148 hasConceptScore W4225677148C11413529 @default.
- W4225677148 hasConceptScore W4225677148C154945302 @default.
- W4225677148 hasConceptScore W4225677148C19499675 @default.
- W4225677148 hasConceptScore W4225677148C203479927 @default.
- W4225677148 hasConceptScore W4225677148C33923547 @default.
- W4225677148 hasConceptScore W4225677148C41008148 @default.
- W4225677148 hasConceptScore W4225677148C6557445 @default.
- W4225677148 hasConceptScore W4225677148C86803240 @default.
- W4225677148 hasFunder F4320306101 @default.
- W4225677148 hasLocation W42256771481 @default.
- W4225677148 hasOpenAccess W4225677148 @default.