Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226090820> ?p ?o ?g. }
- W4226090820 endingPage "e0000004" @default.
- W4226090820 startingPage "e0000004" @default.
- W4226090820 abstract "Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analyze Electronic Health Records (EHRs) from the University of Utah and Primary Children's Hospital (over 1.6 million patients and 77 million visits) for comorbid diagnoses, procedures, and medications. Using explainable Artificial Intelligence (AI) methodologies, we then tease apart the intertwined, conditionally-dependent impacts of comorbid conditions and demography upon cardiovascular health, focusing on the key areas of heart transplant, sinoatrial node dysfunction and various forms of congenital heart disease. The resulting multimorbidity networks make possible wide-ranging explorations of the comorbid and demographic landscapes surrounding these cardiovascular outcomes, and can be distributed as web-based tools for further community-based outcomes research. The ability to transform enormous collections of EHRs into compact, portable tools devoid of Protected Health Information solves many of the legal, technological, and data-scientific challenges associated with large-scale EHR analyses." @default.
- W4226090820 created "2022-05-05" @default.
- W4226090820 creator A5000300255 @default.
- W4226090820 creator A5002943322 @default.
- W4226090820 creator A5006108947 @default.
- W4226090820 creator A5006824090 @default.
- W4226090820 creator A5009373657 @default.
- W4226090820 creator A5012571449 @default.
- W4226090820 creator A5014696304 @default.
- W4226090820 creator A5017544430 @default.
- W4226090820 creator A5017968102 @default.
- W4226090820 creator A5028843181 @default.
- W4226090820 creator A5056271226 @default.
- W4226090820 creator A5070780364 @default.
- W4226090820 creator A5083693705 @default.
- W4226090820 creator A5088663753 @default.
- W4226090820 creator A5091857530 @default.
- W4226090820 date "2022-01-18" @default.
- W4226090820 modified "2023-10-11" @default.
- W4226090820 title "An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records" @default.
- W4226090820 cites W1970809722 @default.
- W4226090820 cites W1976577386 @default.
- W4226090820 cites W2054658115 @default.
- W4226090820 cites W2079474654 @default.
- W4226090820 cites W2114775432 @default.
- W4226090820 cites W2138234147 @default.
- W4226090820 cites W2150845035 @default.
- W4226090820 cites W2161283927 @default.
- W4226090820 cites W2161503313 @default.
- W4226090820 cites W2175160295 @default.
- W4226090820 cites W2390663394 @default.
- W4226090820 cites W2404901863 @default.
- W4226090820 cites W2493614923 @default.
- W4226090820 cites W2621141933 @default.
- W4226090820 cites W2799452352 @default.
- W4226090820 cites W2800167607 @default.
- W4226090820 cites W2910890213 @default.
- W4226090820 cites W2912538051 @default.
- W4226090820 cites W2913424720 @default.
- W4226090820 cites W2915292867 @default.
- W4226090820 cites W2921518676 @default.
- W4226090820 cites W2949129337 @default.
- W4226090820 cites W2973001311 @default.
- W4226090820 cites W2981731882 @default.
- W4226090820 cites W2994685918 @default.
- W4226090820 cites W2997029448 @default.
- W4226090820 cites W3005771161 @default.
- W4226090820 cites W3015449728 @default.
- W4226090820 cites W3024173558 @default.
- W4226090820 cites W3035422487 @default.
- W4226090820 cites W3046761449 @default.
- W4226090820 cites W3090765916 @default.
- W4226090820 cites W3097436443 @default.
- W4226090820 cites W3098949126 @default.
- W4226090820 cites W3109650690 @default.
- W4226090820 cites W3205866799 @default.
- W4226090820 doi "https://doi.org/10.1371/journal.pdig.0000004" @default.
- W4226090820 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35373216" @default.
- W4226090820 hasPublicationYear "2022" @default.
- W4226090820 type Work @default.
- W4226090820 citedByCount "10" @default.
- W4226090820 countsByYear W42260908202022 @default.
- W4226090820 countsByYear W42260908202023 @default.
- W4226090820 crossrefType "journal-article" @default.
- W4226090820 hasAuthorship W4226090820A5000300255 @default.
- W4226090820 hasAuthorship W4226090820A5002943322 @default.
- W4226090820 hasAuthorship W4226090820A5006108947 @default.
- W4226090820 hasAuthorship W4226090820A5006824090 @default.
- W4226090820 hasAuthorship W4226090820A5009373657 @default.
- W4226090820 hasAuthorship W4226090820A5012571449 @default.
- W4226090820 hasAuthorship W4226090820A5014696304 @default.
- W4226090820 hasAuthorship W4226090820A5017544430 @default.
- W4226090820 hasAuthorship W4226090820A5017968102 @default.
- W4226090820 hasAuthorship W4226090820A5028843181 @default.
- W4226090820 hasAuthorship W4226090820A5056271226 @default.
- W4226090820 hasAuthorship W4226090820A5070780364 @default.
- W4226090820 hasAuthorship W4226090820A5083693705 @default.
- W4226090820 hasAuthorship W4226090820A5088663753 @default.
- W4226090820 hasAuthorship W4226090820A5091857530 @default.
- W4226090820 hasBestOaLocation W42260908201 @default.
- W4226090820 hasConcept C118552586 @default.
- W4226090820 hasConcept C142724271 @default.
- W4226090820 hasConcept C154945302 @default.
- W4226090820 hasConcept C160735492 @default.
- W4226090820 hasConcept C162324750 @default.
- W4226090820 hasConcept C2522767166 @default.
- W4226090820 hasConcept C2779159551 @default.
- W4226090820 hasConcept C2908647359 @default.
- W4226090820 hasConcept C3019952477 @default.
- W4226090820 hasConcept C3020144179 @default.
- W4226090820 hasConcept C41008148 @default.
- W4226090820 hasConcept C45827449 @default.
- W4226090820 hasConcept C48044578 @default.
- W4226090820 hasConcept C50522688 @default.
- W4226090820 hasConcept C534262118 @default.
- W4226090820 hasConcept C71924100 @default.
- W4226090820 hasConcept C77088390 @default.
- W4226090820 hasConcept C99454951 @default.