Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226170237> ?p ?o ?g. }
- W4226170237 endingPage "347" @default.
- W4226170237 startingPage "337" @default.
- W4226170237 abstract "We build an original synthetic dataset of 2D mechanical designs alongside their mechanical and geometric constraints, GMCAD. Such a dataset allows training Deep Learning (DL) models for Design for Additive Manufacturing (DfAM) to incorporate and control Computer-Aided-Design (CAD) features with mechanical performance. Geometric AM constraints are often complex to describe, depending on applications, processes, materials. They often lack explicit mathematical descriptions, belong exclusively to the CAD world, and hardly can be integrated into mechanical design, hampering AM design freedom. DL models have recently emerged as a potential to reconcile both CAD and Computer Aided-Engineering (CAE) worlds. They derive data-driven geometric rules over mechanical designs, allowing fine-grained control over the geometry during the design phase, contrary to the conventional CAD-to-CAE sequential approach. DL models, however, need high-quality labeled data, and merging CAD features to CAE aspects is challenging as they rely on different formats, rules, and tools. GMCAD dataset solves this issue following these building steps. (i) Building a DL-mechanical conditions predictor from a dataset generated by a density-gradient-based Topology Optimization method (TO); an AM-synergetic design generation tool. (ii) Creating a CAD dataset inspired by the TO-based designs. (iii) Predicting the mechanical conditions of the CADs using the DL predictor of mechanical conditions. Last, we evaluate the mechanical performance of GMCAD’s designs and derive statistics over CAD and CAE features. Designs of GMCAD show the significant influence of minor geometric changes, explaining the intricate design task of conforming both with functionality and geometric constraints. Consequently, having GMCAD is advantageous to train DL models to generate designs accounting for all these constraints simultaneously, without the need for time-consuming trial and error techniques. Such models could enhance DfAM and go beyond AM; they can also enhance other challenging fields as CAD automatic reconstruction, reverse engineering, isogeometric design and paves the way to multi-objective controllable design generation." @default.
- W4226170237 created "2022-05-05" @default.
- W4226170237 creator A5041690188 @default.
- W4226170237 creator A5049982553 @default.
- W4226170237 creator A5076035761 @default.
- W4226170237 creator A5076142276 @default.
- W4226170237 date "2022-01-01" @default.
- W4226170237 modified "2023-10-14" @default.
- W4226170237 title "GMCAD: an original Synthetic Dataset of 2D Designs along their Geometrical and Mechanical Conditions" @default.
- W4226170237 cites W2016413885 @default.
- W4226170237 cites W2024738922 @default.
- W4226170237 cites W2088880127 @default.
- W4226170237 cites W2092801729 @default.
- W4226170237 cites W2122397978 @default.
- W4226170237 cites W2130760263 @default.
- W4226170237 cites W2132034927 @default.
- W4226170237 cites W2137726847 @default.
- W4226170237 cites W2158862486 @default.
- W4226170237 cites W2176950688 @default.
- W4226170237 cites W2194775991 @default.
- W4226170237 cites W2220999736 @default.
- W4226170237 cites W2508135389 @default.
- W4226170237 cites W2520096069 @default.
- W4226170237 cites W2560378083 @default.
- W4226170237 cites W2601695524 @default.
- W4226170237 cites W2622826443 @default.
- W4226170237 cites W2754797376 @default.
- W4226170237 cites W2774320778 @default.
- W4226170237 cites W2791216293 @default.
- W4226170237 cites W2791290840 @default.
- W4226170237 cites W2884367402 @default.
- W4226170237 cites W2899055074 @default.
- W4226170237 cites W2955039361 @default.
- W4226170237 cites W2963563190 @default.
- W4226170237 cites W3020841920 @default.
- W4226170237 cites W3026358692 @default.
- W4226170237 cites W3033356148 @default.
- W4226170237 cites W3037491363 @default.
- W4226170237 cites W3038590430 @default.
- W4226170237 cites W305632992 @default.
- W4226170237 cites W3117465300 @default.
- W4226170237 cites W3135186041 @default.
- W4226170237 cites W3185034647 @default.
- W4226170237 doi "https://doi.org/10.1016/j.procs.2022.01.232" @default.
- W4226170237 hasPublicationYear "2022" @default.
- W4226170237 type Work @default.
- W4226170237 citedByCount "3" @default.
- W4226170237 countsByYear W42261702372022 @default.
- W4226170237 countsByYear W42261702372023 @default.
- W4226170237 crossrefType "journal-article" @default.
- W4226170237 hasAuthorship W4226170237A5041690188 @default.
- W4226170237 hasAuthorship W4226170237A5049982553 @default.
- W4226170237 hasAuthorship W4226170237A5076035761 @default.
- W4226170237 hasAuthorship W4226170237A5076142276 @default.
- W4226170237 hasBestOaLocation W42261702371 @default.
- W4226170237 hasConcept C111919701 @default.
- W4226170237 hasConcept C11413529 @default.
- W4226170237 hasConcept C119823426 @default.
- W4226170237 hasConcept C119857082 @default.
- W4226170237 hasConcept C127413603 @default.
- W4226170237 hasConcept C154945302 @default.
- W4226170237 hasConcept C194789388 @default.
- W4226170237 hasConcept C199639397 @default.
- W4226170237 hasConcept C2985681428 @default.
- W4226170237 hasConcept C40319758 @default.
- W4226170237 hasConcept C41008148 @default.
- W4226170237 hasConcept C78519656 @default.
- W4226170237 hasConceptScore W4226170237C111919701 @default.
- W4226170237 hasConceptScore W4226170237C11413529 @default.
- W4226170237 hasConceptScore W4226170237C119823426 @default.
- W4226170237 hasConceptScore W4226170237C119857082 @default.
- W4226170237 hasConceptScore W4226170237C127413603 @default.
- W4226170237 hasConceptScore W4226170237C154945302 @default.
- W4226170237 hasConceptScore W4226170237C194789388 @default.
- W4226170237 hasConceptScore W4226170237C199639397 @default.
- W4226170237 hasConceptScore W4226170237C2985681428 @default.
- W4226170237 hasConceptScore W4226170237C40319758 @default.
- W4226170237 hasConceptScore W4226170237C41008148 @default.
- W4226170237 hasConceptScore W4226170237C78519656 @default.
- W4226170237 hasLocation W42261702371 @default.
- W4226170237 hasLocation W42261702372 @default.
- W4226170237 hasLocation W42261702373 @default.
- W4226170237 hasLocation W42261702374 @default.
- W4226170237 hasOpenAccess W4226170237 @default.
- W4226170237 hasPrimaryLocation W42261702371 @default.
- W4226170237 hasRelatedWork W1591835233 @default.
- W4226170237 hasRelatedWork W1989049983 @default.
- W4226170237 hasRelatedWork W2004607252 @default.
- W4226170237 hasRelatedWork W2025797998 @default.
- W4226170237 hasRelatedWork W2061657315 @default.
- W4226170237 hasRelatedWork W2090682091 @default.
- W4226170237 hasRelatedWork W2322832860 @default.
- W4226170237 hasRelatedWork W2766742654 @default.
- W4226170237 hasRelatedWork W2989435479 @default.
- W4226170237 hasRelatedWork W625186032 @default.
- W4226170237 hasVolume "200" @default.
- W4226170237 isParatext "false" @default.
- W4226170237 isRetracted "false" @default.