Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226506575> ?p ?o ?g. }
- W4226506575 endingPage "106914" @default.
- W4226506575 startingPage "106914" @default.
- W4226506575 abstract "Soybean cultivar recognition plays a vital role in cultivar evaluation, selection and production. Recently, there is an increasing interest in taking leaf image patterns as clues for distinguishing soybean cultivars. However, due to the higher inter-class similarity of soybean cultivars over plant species, the cultivar classification accuracies reported by the existing methods are far lower than those published on plant species recognition which make computer vision community have a concern whether leaf image patterns can provide sufficient discriminative information for identifying soybean cultivars. In this paper, we explore fusing deep learning features of leaves from different parts of soybean plants for achieving an accurate cultivar recognition. In our method, the deep learning features of triplet leave image patterns that consists of leaves from the lower, middle, and upper parts of soybean plants are fused by two methods, distance fusion and classifier fusion. In the former, the L1 distance measurements defined on the deep feature spaces of triplet leaf image patterns are fused prior to using 1NN classifier for classification. While in the later, the SVM classifiers trained by the deep features of triple leaf image patterns are combined by sum rule for cultivar prediction. We use the SoyCultivar200 leaf dataset which consists of 6000 samples from 200 soybean cultivars as benchmark. Our method achieves an exciting classification rate of 83.55% which demonstrates that our proposed fusion of deep features of triplet leaf image patterns can provide strong discriminative information for accurately identifying soybean cultivars." @default.
- W4226506575 created "2022-05-05" @default.
- W4226506575 creator A5019560977 @default.
- W4226506575 creator A5021355100 @default.
- W4226506575 creator A5028462736 @default.
- W4226506575 creator A5033732336 @default.
- W4226506575 creator A5045336301 @default.
- W4226506575 creator A5065601174 @default.
- W4226506575 date "2022-06-01" @default.
- W4226506575 modified "2023-10-17" @default.
- W4226506575 title "Fusing deep learning features of triplet leaf image patterns to boost soybean cultivar identification" @default.
- W4226506575 cites W1521726165 @default.
- W4226506575 cites W1573350060 @default.
- W4226506575 cites W1858660163 @default.
- W4226506575 cites W1897159885 @default.
- W4226506575 cites W1976814955 @default.
- W4226506575 cites W1990492213 @default.
- W4226506575 cites W2030432742 @default.
- W4226506575 cites W2053544201 @default.
- W4226506575 cites W2060287676 @default.
- W4226506575 cites W2064653431 @default.
- W4226506575 cites W2085925674 @default.
- W4226506575 cites W2086377778 @default.
- W4226506575 cites W2096038174 @default.
- W4226506575 cites W2120911695 @default.
- W4226506575 cites W2153635508 @default.
- W4226506575 cites W2158275940 @default.
- W4226506575 cites W2213241010 @default.
- W4226506575 cites W2231475705 @default.
- W4226506575 cites W2264784471 @default.
- W4226506575 cites W2294494915 @default.
- W4226506575 cites W2326255291 @default.
- W4226506575 cites W2376665052 @default.
- W4226506575 cites W2470803522 @default.
- W4226506575 cites W2568155635 @default.
- W4226506575 cites W2616728375 @default.
- W4226506575 cites W2769149485 @default.
- W4226506575 cites W2791899572 @default.
- W4226506575 cites W2793323033 @default.
- W4226506575 cites W2796750794 @default.
- W4226506575 cites W2884238566 @default.
- W4226506575 cites W2886744987 @default.
- W4226506575 cites W2951241792 @default.
- W4226506575 cites W297895949 @default.
- W4226506575 cites W2995504058 @default.
- W4226506575 cites W3015445699 @default.
- W4226506575 cites W3082775180 @default.
- W4226506575 cites W3093238181 @default.
- W4226506575 cites W3115858198 @default.
- W4226506575 cites W3127158680 @default.
- W4226506575 cites W3173170759 @default.
- W4226506575 cites W3195332553 @default.
- W4226506575 cites W3202664683 @default.
- W4226506575 cites W960955770 @default.
- W4226506575 doi "https://doi.org/10.1016/j.compag.2022.106914" @default.
- W4226506575 hasPublicationYear "2022" @default.
- W4226506575 type Work @default.
- W4226506575 citedByCount "9" @default.
- W4226506575 countsByYear W42265065752022 @default.
- W4226506575 countsByYear W42265065752023 @default.
- W4226506575 crossrefType "journal-article" @default.
- W4226506575 hasAuthorship W4226506575A5019560977 @default.
- W4226506575 hasAuthorship W4226506575A5021355100 @default.
- W4226506575 hasAuthorship W4226506575A5028462736 @default.
- W4226506575 hasAuthorship W4226506575A5033732336 @default.
- W4226506575 hasAuthorship W4226506575A5045336301 @default.
- W4226506575 hasAuthorship W4226506575A5065601174 @default.
- W4226506575 hasConcept C108583219 @default.
- W4226506575 hasConcept C115961682 @default.
- W4226506575 hasConcept C12267149 @default.
- W4226506575 hasConcept C153180895 @default.
- W4226506575 hasConcept C154945302 @default.
- W4226506575 hasConcept C197321923 @default.
- W4226506575 hasConcept C33923547 @default.
- W4226506575 hasConcept C41008148 @default.
- W4226506575 hasConcept C6557445 @default.
- W4226506575 hasConcept C75294576 @default.
- W4226506575 hasConcept C86803240 @default.
- W4226506575 hasConcept C95623464 @default.
- W4226506575 hasConcept C97931131 @default.
- W4226506575 hasConceptScore W4226506575C108583219 @default.
- W4226506575 hasConceptScore W4226506575C115961682 @default.
- W4226506575 hasConceptScore W4226506575C12267149 @default.
- W4226506575 hasConceptScore W4226506575C153180895 @default.
- W4226506575 hasConceptScore W4226506575C154945302 @default.
- W4226506575 hasConceptScore W4226506575C197321923 @default.
- W4226506575 hasConceptScore W4226506575C33923547 @default.
- W4226506575 hasConceptScore W4226506575C41008148 @default.
- W4226506575 hasConceptScore W4226506575C6557445 @default.
- W4226506575 hasConceptScore W4226506575C75294576 @default.
- W4226506575 hasConceptScore W4226506575C86803240 @default.
- W4226506575 hasConceptScore W4226506575C95623464 @default.
- W4226506575 hasConceptScore W4226506575C97931131 @default.
- W4226506575 hasLocation W42265065751 @default.
- W4226506575 hasOpenAccess W4226506575 @default.
- W4226506575 hasPrimaryLocation W42265065751 @default.
- W4226506575 hasRelatedWork W1997235926 @default.
- W4226506575 hasRelatedWork W2005234362 @default.