Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229028552> ?p ?o ?g. }
- W4229028552 endingPage "3782" @default.
- W4229028552 startingPage "3768" @default.
- W4229028552 abstract "Many hippocampal CA1 pyramidal cells function as place cells, increasing their firing rate when a specific place field is traversed. The dependence of CA1 place cell firing on position within the place field is asymmetric. We investigated the source of this asymmetry by injecting triangular depolarizing current ramps to approximate the spatially tuned, temporally diffuse depolarizing synaptic input received by these neurons while traversing a place field. Ramps were applied to CA1 pyramidal neurons from male rats in vitro (slice electrophysiology) and in silico (multicompartmental NEURON model). Under control conditions, CA1 neurons fired more action potentials at higher frequencies on the up-ramp versus the down-ramp. This effect was more pronounced for dendritic compared with somatic ramps. We incorporated a four-state Markov scheme for NaV1.6 channels into our model and calibrated the spatial dependence of long-term inactivation according to the literature; this spatial dependence was sufficient to explain the difference in dendritic versus somatic ramps. Long-term inactivation reduced the firing frequency by decreasing open-state occupancy, and reduced spike amplitude during trains by decreasing occupancy in the closed state, which comprises the available pool. PKC activator phorbol-dibutyrate, known to reduce NaV long-term inactivation, removed spike amplitude attenuation in vitro more visibly in dendrites and greatly reduced adaptation, consistent with our hypothesized mechanism. Intracellular application of a peptide inducing long-term NaV inactivation elicited spike amplitude attenuation during spike trains in the soma and greatly enhanced adaptation. Our synergistic experimental/computational approach shows that long-term inactivation of NaV1.6 is a key mechanism of adaptation in CA1 pyramidal cells.SIGNIFICANCE STATEMENT The hippocampus plays an important role in certain types of memory, in part through context-specific firing of place cells; these cells were first identified in rodents as being particularly active when an animal is in a specific location in an environment, called the place field of that neuron. In this in vitro/in silico study, we found that long-term inactivation of sodium channels causes adaptation in the firing rate that could potentially skew the firing of CA1 hippocampal pyramidal neurons earlier within a place field. A computational model of the sodium channel revealed differential regulation of spike frequency and amplitude by long-term inactivation, which may be a general mechanism for spike frequency adaptation in the CNS." @default.
- W4229028552 created "2022-05-08" @default.
- W4229028552 creator A5001226545 @default.
- W4229028552 creator A5016926365 @default.
- W4229028552 creator A5049501707 @default.
- W4229028552 creator A5056283225 @default.
- W4229028552 creator A5057798287 @default.
- W4229028552 creator A5072826383 @default.
- W4229028552 date "2022-03-24" @default.
- W4229028552 modified "2023-09-30" @default.
- W4229028552 title "Long-Term Inactivation of Sodium Channels as a Mechanism of Adaptation in CA1 Pyramidal Neurons" @default.
- W4229028552 cites W1484100077 @default.
- W4229028552 cites W1496192961 @default.
- W4229028552 cites W1536319037 @default.
- W4229028552 cites W1549050411 @default.
- W4229028552 cites W1566654154 @default.
- W4229028552 cites W1605797652 @default.
- W4229028552 cites W1850272931 @default.
- W4229028552 cites W1966903828 @default.
- W4229028552 cites W1970006557 @default.
- W4229028552 cites W1974433144 @default.
- W4229028552 cites W1981737644 @default.
- W4229028552 cites W1982168518 @default.
- W4229028552 cites W1987369275 @default.
- W4229028552 cites W1991417588 @default.
- W4229028552 cites W1994207993 @default.
- W4229028552 cites W1996258076 @default.
- W4229028552 cites W2000509838 @default.
- W4229028552 cites W2000767251 @default.
- W4229028552 cites W2001591309 @default.
- W4229028552 cites W2002864116 @default.
- W4229028552 cites W2004251232 @default.
- W4229028552 cites W2010698797 @default.
- W4229028552 cites W2015255899 @default.
- W4229028552 cites W2017161867 @default.
- W4229028552 cites W2020104881 @default.
- W4229028552 cites W2029601828 @default.
- W4229028552 cites W2043204092 @default.
- W4229028552 cites W2043225986 @default.
- W4229028552 cites W2048528277 @default.
- W4229028552 cites W2048882619 @default.
- W4229028552 cites W2050566796 @default.
- W4229028552 cites W2052515926 @default.
- W4229028552 cites W2057179329 @default.
- W4229028552 cites W2063067007 @default.
- W4229028552 cites W2065693649 @default.
- W4229028552 cites W2072477159 @default.
- W4229028552 cites W2078529082 @default.
- W4229028552 cites W2089485366 @default.
- W4229028552 cites W2093362207 @default.
- W4229028552 cites W2097182756 @default.
- W4229028552 cites W2102706228 @default.
- W4229028552 cites W2103156942 @default.
- W4229028552 cites W2112272723 @default.
- W4229028552 cites W2122932525 @default.
- W4229028552 cites W2125733184 @default.
- W4229028552 cites W2132593434 @default.
- W4229028552 cites W2136998887 @default.
- W4229028552 cites W2140396009 @default.
- W4229028552 cites W2140845062 @default.
- W4229028552 cites W2149615516 @default.
- W4229028552 cites W2164649534 @default.
- W4229028552 cites W2164966101 @default.
- W4229028552 cites W2165375369 @default.
- W4229028552 cites W2287398345 @default.
- W4229028552 cites W23745746 @default.
- W4229028552 cites W2750632467 @default.
- W4229028552 cites W2887613358 @default.
- W4229028552 cites W2896562673 @default.
- W4229028552 cites W2989801599 @default.
- W4229028552 cites W3007849688 @default.
- W4229028552 cites W3009946906 @default.
- W4229028552 cites W3200194155 @default.
- W4229028552 cites W4301904250 @default.
- W4229028552 cites W954230352 @default.
- W4229028552 doi "https://doi.org/10.1523/jneurosci.1914-21.2022" @default.
- W4229028552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35332085" @default.
- W4229028552 hasPublicationYear "2022" @default.
- W4229028552 type Work @default.
- W4229028552 citedByCount "2" @default.
- W4229028552 countsByYear W42290285522022 @default.
- W4229028552 countsByYear W42290285522023 @default.
- W4229028552 crossrefType "journal-article" @default.
- W4229028552 hasAuthorship W4229028552A5001226545 @default.
- W4229028552 hasAuthorship W4229028552A5016926365 @default.
- W4229028552 hasAuthorship W4229028552A5049501707 @default.
- W4229028552 hasAuthorship W4229028552A5056283225 @default.
- W4229028552 hasAuthorship W4229028552A5057798287 @default.
- W4229028552 hasAuthorship W4229028552A5072826383 @default.
- W4229028552 hasBestOaLocation W42290285521 @default.
- W4229028552 hasConcept C117838684 @default.
- W4229028552 hasConcept C12554922 @default.
- W4229028552 hasConcept C148762608 @default.
- W4229028552 hasConcept C169760540 @default.
- W4229028552 hasConcept C178790620 @default.
- W4229028552 hasConcept C185263204 @default.
- W4229028552 hasConcept C185592680 @default.
- W4229028552 hasConcept C194544171 @default.