Matches in SemOpenAlex for { <https://semopenalex.org/work/W4285254977> ?p ?o ?g. }
- W4285254977 endingPage "196" @default.
- W4285254977 startingPage "151" @default.
- W4285254977 abstract "The chemical characteristics of the Solfatara-Pisciarelli fumarolic fluids sampled and analyzed by Chiodini and coworkers were investigated by means of simple binary diagrams, chronograms, and Principal Component Analysis (PCA). Based on these different approaches, it turns out that CO2, H2, CO, and He (and to some extent H2S, N2 and Ar as well) are tracers of deep gases. The concentrations of these gas species and related PC’s depend on the proportions of deep gases in the considered gas mixtures as well as on the temperatures and/or redox conditions in the gas production zone(s). Methane concentration and the PC mainly receiving its contribution are probably governed by CH4 production somewhere within the Solfatara magmatic-hydrothermal system, owing to the nil to negligible methane concentrations in high-temperature volcanic-magmatic fluids. In the triangular diagram of N2-Ar-He, all the Solfatara-Pisciarelli fumarolic fluids are positioned between the He-rich gases from the mantle and/or the crust and the N2-rich compositions typical of most arc-type magmatic gases, apart from a few samples which are slightly enriched in Ar due to air contamination. Further indications are given by the isotopic values of these three gases. In detail: (i) Argon derives from mixing of non-atmospheric40Ar and atmospheric air, with nil to negligible proportions of air-saturated water (ASW), and this implies that the H2-Ar geothermometer cannot be applied to the Solfatara-Pisciarelli fluids. (ii) Referring to the endmembers Caliro et al. (2014), helium originates from mixing of magmatic component M1, with 3He/4He isotope ratio of 3.53 R/RA, magmatic component M2, with 3He/4He isotope ratio of 2.41 R/RA, and the hydrothermal component, with 3He/4He isotope ratio of 1.79 R/RA. (iii) Nitrogen comes mainly from breakdown of sediments, but this process might occur in different places and depths. The δ34S value of H2S was close to the mantle value in the eighties and resulted to be somewhat higher in 1998 - 2001, possibly due to either (i)occurrence of gradual degassing from a single magma batch, without the involvement of new magma or (ii) separation of isotopically light elemental sulfur upstream of the sampling point. The δ13 C value of CO2 indicates that carbon dioxideis mainly produced through thermometamorphic decarbonation of marine carbonates and subordinately by magmatic degassing, with relative proportions close to 80 and 20%, respectively, assuming the equality of CO2 concentrations in these two endmembers. Mantle contamination seems unlikely due to the large proportion of marine carbonate sediments involved in the mixing process. The δ13C values of CO2 and CH4 suggest that these two carbon gases attain isotopic equilibrium at temperatures of 365 to 476°C, in satisfactory agreement with the temperatures of CO2-CH4 chemical equilibrium. The hydrogen isotopes of H2O and the oxygen isotopes of H2O and CO2 were interpreted (i) considering the exchange of oxygen isotopes between H2O vapor and gaseous CO2, (ii) modeling the effects of magmatic degassing, and (iii) taking into account the possible entrainment of secondary steam into the uprising deep fluids. It turns out that the H2O released by magmatic degassing prevails by far over the H2O coming from other sources.∎∎∎" @default.
- W4285254977 created "2022-07-14" @default.
- W4285254977 creator A5031703347 @default.
- W4285254977 creator A5069393136 @default.
- W4285254977 creator A5075747721 @default.
- W4285254977 date "2022-01-01" @default.
- W4285254977 modified "2023-10-17" @default.
- W4285254977 title "Chemical and Isotopic Characteristics of the Solfatara-Pisciarelli Fumarolic Fluids" @default.
- W4285254977 cites W122623781 @default.
- W4285254977 cites W192043380 @default.
- W4285254977 cites W1950269140 @default.
- W4285254977 cites W1965923240 @default.
- W4285254977 cites W1968389139 @default.
- W4285254977 cites W1968497820 @default.
- W4285254977 cites W1974530788 @default.
- W4285254977 cites W1977866567 @default.
- W4285254977 cites W1980501431 @default.
- W4285254977 cites W1981121449 @default.
- W4285254977 cites W1983782186 @default.
- W4285254977 cites W1985426869 @default.
- W4285254977 cites W2001987411 @default.
- W4285254977 cites W2004115619 @default.
- W4285254977 cites W2004485257 @default.
- W4285254977 cites W2007113204 @default.
- W4285254977 cites W2011859446 @default.
- W4285254977 cites W2013173266 @default.
- W4285254977 cites W2019721332 @default.
- W4285254977 cites W2020832131 @default.
- W4285254977 cites W2021134687 @default.
- W4285254977 cites W2024337591 @default.
- W4285254977 cites W2024349823 @default.
- W4285254977 cites W2024418086 @default.
- W4285254977 cites W2025809592 @default.
- W4285254977 cites W2026334430 @default.
- W4285254977 cites W2028573058 @default.
- W4285254977 cites W2031207922 @default.
- W4285254977 cites W2032370941 @default.
- W4285254977 cites W2041522814 @default.
- W4285254977 cites W2044159830 @default.
- W4285254977 cites W2046719258 @default.
- W4285254977 cites W2049655084 @default.
- W4285254977 cites W2049693080 @default.
- W4285254977 cites W2056596481 @default.
- W4285254977 cites W2056744615 @default.
- W4285254977 cites W2056907568 @default.
- W4285254977 cites W2058527358 @default.
- W4285254977 cites W2064484668 @default.
- W4285254977 cites W2073640430 @default.
- W4285254977 cites W2075262340 @default.
- W4285254977 cites W2085138176 @default.
- W4285254977 cites W2085311334 @default.
- W4285254977 cites W2085786036 @default.
- W4285254977 cites W2086940060 @default.
- W4285254977 cites W2088654751 @default.
- W4285254977 cites W2090258675 @default.
- W4285254977 cites W2094580500 @default.
- W4285254977 cites W2095286551 @default.
- W4285254977 cites W2098849316 @default.
- W4285254977 cites W2100079681 @default.
- W4285254977 cites W2111574589 @default.
- W4285254977 cites W2125165316 @default.
- W4285254977 cites W2127671904 @default.
- W4285254977 cites W2143154130 @default.
- W4285254977 cites W2145604970 @default.
- W4285254977 cites W2156339013 @default.
- W4285254977 cites W2157671567 @default.
- W4285254977 cites W2171737369 @default.
- W4285254977 cites W2179323784 @default.
- W4285254977 cites W2204076520 @default.
- W4285254977 cites W2323160308 @default.
- W4285254977 cites W2345858223 @default.
- W4285254977 cites W2737770824 @default.
- W4285254977 cites W2768040817 @default.
- W4285254977 cites W2771049636 @default.
- W4285254977 cites W2790643459 @default.
- W4285254977 cites W2883475843 @default.
- W4285254977 cites W2899616506 @default.
- W4285254977 cites W2901733028 @default.
- W4285254977 cites W2918011602 @default.
- W4285254977 cites W3083741707 @default.
- W4285254977 cites W3139587802 @default.
- W4285254977 doi "https://doi.org/10.1007/978-3-030-98471-7_5" @default.
- W4285254977 hasPublicationYear "2022" @default.
- W4285254977 type Work @default.
- W4285254977 citedByCount "0" @default.
- W4285254977 crossrefType "book-chapter" @default.
- W4285254977 hasAuthorship W4285254977A5031703347 @default.
- W4285254977 hasAuthorship W4285254977A5069393136 @default.
- W4285254977 hasAuthorship W4285254977A5075747721 @default.
- W4285254977 hasConcept C120806208 @default.
- W4285254977 hasConcept C121332964 @default.
- W4285254977 hasConcept C127313418 @default.
- W4285254977 hasConcept C156622251 @default.
- W4285254977 hasConcept C165205528 @default.
- W4285254977 hasConcept C17409809 @default.
- W4285254977 hasConcept C178790620 @default.
- W4285254977 hasConcept C179537507 @default.
- W4285254977 hasConcept C180756352 @default.