Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288045321> ?p ?o ?g. }
- W4288045321 endingPage "322" @default.
- W4288045321 startingPage "308" @default.
- W4288045321 abstract "Administration of biologics such as proteins, vaccines, and phages via the respiratory route is becoming increasingly popular. Inhalable powder formulations for the successful delivery of biologics must first ensure both powder dispersibility and physicochemical stability. A lipid-based inhalable microparticle platform combining the stability advantages offered by dry powder formulations and high dispersibility afforded by a rugose morphology was spray dried and tested. A new simplified spray drying method requiring no organic solvents or complicated feedstock preparation processes was introduced for the manufacture of the microparticles. Trehalose was selected to form the amorphous particle core, because of its well-known ability to stabilize biologics, and also because of its ability to serve as a surrogate for small molecule actives. Phospholipid distearoyl phosphatidylcholine (DSPC), the lipid component in this formulation, was used as a shell former to improve powder dispersibility. Effectiveness of the lipid excipient in modifying trehalose particle morphology and enhancing powder dispersibility was evaluated at different lipid mass fractions (5%, 10%, 25%, 50%) and compared with that of several previously published shell-forming excipients at their effective mass fractions, i.e., 5% trileucine, 20% leucine, and 40% pullulan. A strong dependence of particle morphology on the lipid mass fraction was observed. Particles transitioned from typical smooth spherical trehalose particles without lipid to highly rugose microparticles at higher lipid mass fractions (>5%). In vitro aerosol performance testing demonstrated a significant improvement of powder dispersibility even at lipid mass fractions as low as 5%. Powder formulations with excellent aerosol performance comparable to those modified with leucine and trileucine were achieved at higher lipid mass fractions (>25%). A model biologic-containing formulation with 35% myoglobin, 35% glass stabilizer (trehalose), and 30% lipid shell former was shown to produce highly rugose particle structure as designed and excellent aerosol performance for efficient pulmonary delivery. A short-term stability at 40 °C proved that this protein-containing formulation had good thermal stability as designed. The results demonstrated great potential for the new lipid microparticle as a platform for the delivery of both small-molecule APIs and large-molecule biologics to the lung." @default.
- W4288045321 created "2022-07-27" @default.
- W4288045321 creator A5003082116 @default.
- W4288045321 creator A5045378562 @default.
- W4288045321 creator A5050690054 @default.
- W4288045321 creator A5065422516 @default.
- W4288045321 creator A5074772184 @default.
- W4288045321 creator A5077682710 @default.
- W4288045321 creator A5091664560 @default.
- W4288045321 date "2022-08-01" @default.
- W4288045321 modified "2023-10-18" @default.
- W4288045321 title "Inhalable microparticle platform based on a novel shell-forming lipid excipient and its feasibility for respirable delivery of biologics" @default.
- W4288045321 cites W1530583636 @default.
- W4288045321 cites W1548782160 @default.
- W4288045321 cites W1682113535 @default.
- W4288045321 cites W1751557895 @default.
- W4288045321 cites W1966326760 @default.
- W4288045321 cites W1967589531 @default.
- W4288045321 cites W1977143275 @default.
- W4288045321 cites W1978160437 @default.
- W4288045321 cites W1985484350 @default.
- W4288045321 cites W1991564189 @default.
- W4288045321 cites W1993771770 @default.
- W4288045321 cites W2002594100 @default.
- W4288045321 cites W2013499814 @default.
- W4288045321 cites W2019616752 @default.
- W4288045321 cites W2021064852 @default.
- W4288045321 cites W2027079562 @default.
- W4288045321 cites W2038217239 @default.
- W4288045321 cites W2043943787 @default.
- W4288045321 cites W2046138532 @default.
- W4288045321 cites W2047461057 @default.
- W4288045321 cites W2050271125 @default.
- W4288045321 cites W2051696465 @default.
- W4288045321 cites W2057107937 @default.
- W4288045321 cites W2058889783 @default.
- W4288045321 cites W2067121848 @default.
- W4288045321 cites W2070067157 @default.
- W4288045321 cites W2070366051 @default.
- W4288045321 cites W2074983458 @default.
- W4288045321 cites W2077197422 @default.
- W4288045321 cites W2078367818 @default.
- W4288045321 cites W2085051997 @default.
- W4288045321 cites W2088106501 @default.
- W4288045321 cites W2108174879 @default.
- W4288045321 cites W2110604072 @default.
- W4288045321 cites W2111530512 @default.
- W4288045321 cites W2112135623 @default.
- W4288045321 cites W2117812883 @default.
- W4288045321 cites W2137398998 @default.
- W4288045321 cites W2139491055 @default.
- W4288045321 cites W2296941757 @default.
- W4288045321 cites W2317895461 @default.
- W4288045321 cites W2530735078 @default.
- W4288045321 cites W2587584959 @default.
- W4288045321 cites W2605390158 @default.
- W4288045321 cites W2747027081 @default.
- W4288045321 cites W2752022640 @default.
- W4288045321 cites W2794284081 @default.
- W4288045321 cites W2807398188 @default.
- W4288045321 cites W2810218689 @default.
- W4288045321 cites W2912631730 @default.
- W4288045321 cites W2933329466 @default.
- W4288045321 cites W2994953447 @default.
- W4288045321 cites W2998122149 @default.
- W4288045321 cites W3042697142 @default.
- W4288045321 cites W3082616038 @default.
- W4288045321 cites W3109752780 @default.
- W4288045321 cites W3135659679 @default.
- W4288045321 cites W3136864934 @default.
- W4288045321 cites W3138267048 @default.
- W4288045321 cites W3148469206 @default.
- W4288045321 cites W3153515080 @default.
- W4288045321 cites W3157009388 @default.
- W4288045321 cites W3179474508 @default.
- W4288045321 cites W3180425539 @default.
- W4288045321 cites W3208669863 @default.
- W4288045321 cites W4226397757 @default.
- W4288045321 doi "https://doi.org/10.1016/j.ejpb.2022.07.013" @default.
- W4288045321 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35905804" @default.
- W4288045321 hasPublicationYear "2022" @default.
- W4288045321 type Work @default.
- W4288045321 citedByCount "5" @default.
- W4288045321 countsByYear W42880453212023 @default.
- W4288045321 crossrefType "journal-article" @default.
- W4288045321 hasAuthorship W4288045321A5003082116 @default.
- W4288045321 hasAuthorship W4288045321A5045378562 @default.
- W4288045321 hasAuthorship W4288045321A5050690054 @default.
- W4288045321 hasAuthorship W4288045321A5065422516 @default.
- W4288045321 hasAuthorship W4288045321A5074772184 @default.
- W4288045321 hasAuthorship W4288045321A5077682710 @default.
- W4288045321 hasAuthorship W4288045321A5091664560 @default.
- W4288045321 hasConcept C111368507 @default.
- W4288045321 hasConcept C127313418 @default.
- W4288045321 hasConcept C127413603 @default.
- W4288045321 hasConcept C147789679 @default.
- W4288045321 hasConcept C178790620 @default.
- W4288045321 hasConcept C185592680 @default.