Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289922182> ?p ?o ?g. }
- W4289922182 endingPage "83220" @default.
- W4289922182 startingPage "83204" @default.
- W4289922182 abstract "Texture plays a crucial role in computer vision, providing valuable information about image regions. Log Gabor filters that mimic the human eye’s visual cortex are used as feature extractors to identify medicinal plants based on the leaf textural features. This method was tested on a dataset developed from the Centre of Plant Medicine Research, Ghana, consisting of forty-nine (49) plant species as well as the Flavia and Swedish Leaf datasets, which are benchmark datasets. The Log Gabor filter outperformed the Gabor filters, which have been extensively used in this area when tested on nine supervised classifiers (K-Nearest Neighbour, Support Vector Machine, Naïve Bayes, Logistic Regression, Decision tree, Random Forest, Multilayer Perceptron, Gradient Boosting and Stochastic Gradient Descent) with 10-fold cross-validation. The Support Vector Machine and Multilayer Perceptron were the best performing classifiers for both Log Gabor filter and Gabor filter in terms of accuracy, precision, true positive rate, F1 score and false positive rate. The Log Gabor filter’s highest accuracy was 79% for Mydatastet, 97% for Flavia, and 98% for the Swedish Leaf dataset whiles the Gabor filter’s highest accuracy was 66% for Mydatastet, 92% for Flavia and 96% for the Swedish Leaf dataset." @default.
- W4289922182 created "2022-08-06" @default.
- W4289922182 creator A5058559943 @default.
- W4289922182 creator A5072359636 @default.
- W4289922182 creator A5075557431 @default.
- W4289922182 creator A5076345517 @default.
- W4289922182 date "2022-01-01" @default.
- W4289922182 modified "2023-10-05" @default.
- W4289922182 title "Textural Analysis for Medicinal Plants Identification Using Log Gabor Filters" @default.
- W4289922182 cites W1615787874 @default.
- W4289922182 cites W1852849178 @default.
- W4289922182 cites W1968896562 @default.
- W4289922182 cites W1970366469 @default.
- W4289922182 cites W2003400461 @default.
- W4289922182 cites W2012093028 @default.
- W4289922182 cites W2050480977 @default.
- W4289922182 cites W2098532194 @default.
- W4289922182 cites W2102372511 @default.
- W4289922182 cites W2114351767 @default.
- W4289922182 cites W2139107690 @default.
- W4289922182 cites W2169856283 @default.
- W4289922182 cites W2230508580 @default.
- W4289922182 cites W2406709078 @default.
- W4289922182 cites W2466367677 @default.
- W4289922182 cites W2520893792 @default.
- W4289922182 cites W2531191966 @default.
- W4289922182 cites W2555330755 @default.
- W4289922182 cites W2568155635 @default.
- W4289922182 cites W2581582247 @default.
- W4289922182 cites W2606543828 @default.
- W4289922182 cites W2620180909 @default.
- W4289922182 cites W2621789928 @default.
- W4289922182 cites W2787219651 @default.
- W4289922182 cites W2888728157 @default.
- W4289922182 cites W2895238724 @default.
- W4289922182 cites W2902013328 @default.
- W4289922182 cites W2903220284 @default.
- W4289922182 cites W2907648650 @default.
- W4289922182 cites W2913054853 @default.
- W4289922182 cites W2954936648 @default.
- W4289922182 cites W2955016451 @default.
- W4289922182 cites W2988779004 @default.
- W4289922182 cites W2990346675 @default.
- W4289922182 cites W2994159190 @default.
- W4289922182 cites W2995098893 @default.
- W4289922182 cites W3007004976 @default.
- W4289922182 cites W3013330736 @default.
- W4289922182 cites W3013840624 @default.
- W4289922182 cites W3017314941 @default.
- W4289922182 cites W3024738743 @default.
- W4289922182 cites W3025975432 @default.
- W4289922182 cites W3031656342 @default.
- W4289922182 cites W3045756608 @default.
- W4289922182 cites W3049178586 @default.
- W4289922182 cites W3090710404 @default.
- W4289922182 cites W3100777112 @default.
- W4289922182 cites W3109126425 @default.
- W4289922182 cites W3138539755 @default.
- W4289922182 cites W3141203463 @default.
- W4289922182 cites W3175468393 @default.
- W4289922182 cites W3182554863 @default.
- W4289922182 cites W3201779028 @default.
- W4289922182 cites W3216366741 @default.
- W4289922182 cites W3822628 @default.
- W4289922182 cites W4206632396 @default.
- W4289922182 cites W4211070329 @default.
- W4289922182 cites W4240740821 @default.
- W4289922182 cites W4242045199 @default.
- W4289922182 cites W4248277245 @default.
- W4289922182 cites W4252190344 @default.
- W4289922182 doi "https://doi.org/10.1109/access.2022.3196788" @default.
- W4289922182 hasPublicationYear "2022" @default.
- W4289922182 type Work @default.
- W4289922182 citedByCount "5" @default.
- W4289922182 countsByYear W42899221822022 @default.
- W4289922182 countsByYear W42899221822023 @default.
- W4289922182 crossrefType "journal-article" @default.
- W4289922182 hasAuthorship W4289922182A5058559943 @default.
- W4289922182 hasAuthorship W4289922182A5072359636 @default.
- W4289922182 hasAuthorship W4289922182A5075557431 @default.
- W4289922182 hasAuthorship W4289922182A5076345517 @default.
- W4289922182 hasBestOaLocation W42899221821 @default.
- W4289922182 hasConcept C106131492 @default.
- W4289922182 hasConcept C115961682 @default.
- W4289922182 hasConcept C12267149 @default.
- W4289922182 hasConcept C136902061 @default.
- W4289922182 hasConcept C153180895 @default.
- W4289922182 hasConcept C154945302 @default.
- W4289922182 hasConcept C169258074 @default.
- W4289922182 hasConcept C179717631 @default.
- W4289922182 hasConcept C196216189 @default.
- W4289922182 hasConcept C2779883129 @default.
- W4289922182 hasConcept C31972630 @default.
- W4289922182 hasConcept C33923547 @default.
- W4289922182 hasConcept C41008148 @default.
- W4289922182 hasConcept C46286280 @default.
- W4289922182 hasConcept C47432892 @default.
- W4289922182 hasConcept C50644808 @default.