Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291036698> ?p ?o ?g. }
- W4291036698 endingPage "e10212" @default.
- W4291036698 startingPage "e10212" @default.
- W4291036698 abstract "Appraising the bandgap energy of materials is a major issue in the field of band engineering. To better understand the behavior of GaAs1-uNu material, it is necessary to improve the applied calculation methodologies. The band anticrossing model (BAC) allows modeling of the bandgap energy when diluted nitrogen is incorporated into the material. The model can be improved using artificial neural networks (ANN) as an alternative solution, which is rarely applied. Our goal is to study the efficiency of the (ANN) method to gauge the bandgap energy of the material from experimental measurements, considering the extensive strain due to the lattice mismatch between the substrate and the material. This makes the GaAsN material controllable with (ANN) method, and is a potential candidate for the fabrication of ultrafast optical sensors." @default.
- W4291036698 created "2022-08-13" @default.
- W4291036698 creator A5023678307 @default.
- W4291036698 creator A5026716939 @default.
- W4291036698 creator A5057458180 @default.
- W4291036698 creator A5058562841 @default.
- W4291036698 creator A5059491529 @default.
- W4291036698 creator A5081502570 @default.
- W4291036698 date "2022-08-01" @default.
- W4291036698 modified "2023-09-30" @default.
- W4291036698 title "Bandgap energy modeling of the deformed ternary GaAs1-uNu by artificial neural networks" @default.
- W4291036698 cites W1516453210 @default.
- W4291036698 cites W1556942888 @default.
- W4291036698 cites W1852056422 @default.
- W4291036698 cites W1965014633 @default.
- W4291036698 cites W1979670608 @default.
- W4291036698 cites W1988711232 @default.
- W4291036698 cites W1988785600 @default.
- W4291036698 cites W1991876866 @default.
- W4291036698 cites W1997155383 @default.
- W4291036698 cites W2018204561 @default.
- W4291036698 cites W2018858206 @default.
- W4291036698 cites W2025335929 @default.
- W4291036698 cites W2029397437 @default.
- W4291036698 cites W2031433449 @default.
- W4291036698 cites W2031978665 @default.
- W4291036698 cites W2032074790 @default.
- W4291036698 cites W2044182797 @default.
- W4291036698 cites W2055815621 @default.
- W4291036698 cites W2055918414 @default.
- W4291036698 cites W2056288020 @default.
- W4291036698 cites W2075682657 @default.
- W4291036698 cites W2078096936 @default.
- W4291036698 cites W2085395832 @default.
- W4291036698 cites W2122782494 @default.
- W4291036698 cites W2128349896 @default.
- W4291036698 cites W2141607507 @default.
- W4291036698 cites W2256578114 @default.
- W4291036698 cites W2460418407 @default.
- W4291036698 cites W2530536346 @default.
- W4291036698 cites W2599636113 @default.
- W4291036698 cites W2613237860 @default.
- W4291036698 cites W2759064353 @default.
- W4291036698 cites W2814453874 @default.
- W4291036698 cites W3102790859 @default.
- W4291036698 cites W3133325807 @default.
- W4291036698 cites W3159081601 @default.
- W4291036698 cites W4213077259 @default.
- W4291036698 cites W4285404771 @default.
- W4291036698 cites W4285676356 @default.
- W4291036698 doi "https://doi.org/10.1016/j.heliyon.2022.e10212" @default.
- W4291036698 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36039133" @default.
- W4291036698 hasPublicationYear "2022" @default.
- W4291036698 type Work @default.
- W4291036698 citedByCount "9" @default.
- W4291036698 countsByYear W42910366982022 @default.
- W4291036698 countsByYear W42910366982023 @default.
- W4291036698 crossrefType "journal-article" @default.
- W4291036698 hasAuthorship W4291036698A5023678307 @default.
- W4291036698 hasAuthorship W4291036698A5026716939 @default.
- W4291036698 hasAuthorship W4291036698A5057458180 @default.
- W4291036698 hasAuthorship W4291036698A5058562841 @default.
- W4291036698 hasAuthorship W4291036698A5059491529 @default.
- W4291036698 hasAuthorship W4291036698A5081502570 @default.
- W4291036698 hasBestOaLocation W42910366981 @default.
- W4291036698 hasConcept C120665830 @default.
- W4291036698 hasConcept C121332964 @default.
- W4291036698 hasConcept C127413603 @default.
- W4291036698 hasConcept C154945302 @default.
- W4291036698 hasConcept C171250308 @default.
- W4291036698 hasConcept C178596936 @default.
- W4291036698 hasConcept C181966813 @default.
- W4291036698 hasConcept C186060115 @default.
- W4291036698 hasConcept C192562407 @default.
- W4291036698 hasConcept C199360897 @default.
- W4291036698 hasConcept C24326235 @default.
- W4291036698 hasConcept C41008148 @default.
- W4291036698 hasConcept C49040817 @default.
- W4291036698 hasConcept C50644808 @default.
- W4291036698 hasConcept C520434653 @default.
- W4291036698 hasConcept C61696701 @default.
- W4291036698 hasConcept C64452783 @default.
- W4291036698 hasConcept C86803240 @default.
- W4291036698 hasConceptScore W4291036698C120665830 @default.
- W4291036698 hasConceptScore W4291036698C121332964 @default.
- W4291036698 hasConceptScore W4291036698C127413603 @default.
- W4291036698 hasConceptScore W4291036698C154945302 @default.
- W4291036698 hasConceptScore W4291036698C171250308 @default.
- W4291036698 hasConceptScore W4291036698C178596936 @default.
- W4291036698 hasConceptScore W4291036698C181966813 @default.
- W4291036698 hasConceptScore W4291036698C186060115 @default.
- W4291036698 hasConceptScore W4291036698C192562407 @default.
- W4291036698 hasConceptScore W4291036698C199360897 @default.
- W4291036698 hasConceptScore W4291036698C24326235 @default.
- W4291036698 hasConceptScore W4291036698C41008148 @default.
- W4291036698 hasConceptScore W4291036698C49040817 @default.
- W4291036698 hasConceptScore W4291036698C50644808 @default.
- W4291036698 hasConceptScore W4291036698C520434653 @default.