Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293146095> ?p ?o ?g. }
- W4293146095 endingPage "138201" @default.
- W4293146095 startingPage "138201" @default.
- W4293146095 abstract "Reverse osmosis (RO) technology is currently the most progressive, energy-saving and efficient membrane separation technology . Meanwhile, graphene becomes a promising candidate for fabricating the RO membranes in water desalination due to its high salt rejection and water flux. The concept of “temporal selectivity” is first proposed in our previous work in terms of the time difference between the penetration time of an ion passing through the pore and the tangential slipping time for the ion sliding across the pore. Nevertheless, the temporal selectivity mechanism of multilayered graphene membrane remains ambiguous. In this paper, the RO process of saltwater through porous graphene column RO membrane is studied by using molecular dynamics (MD) simulations method, and the effects of rotating angular velocity and the thickness of RO membrane on desalination performance of seawater are considered first. The MD results show that the salt rejection increases with the rotation speed of porous membrane increasing while the water flux initially increases and then decreases . Meanwhile, the interfacial slip velocity increases linearly with angular velocity increasing. On the other hand, the increasing thickness of porous graphene membrane can enhance the selectivity and reduce the permeability of water molecules. As expected, the tri-layered porous graphene RO membrane can achieve high salt rejection at low interfacial slip velocity. In order to ensure high selectivity and energy conservation and efficient, the pore structure of the porous graphene RO membrane is optimized. The results show that the optimized nanopores can increase the water flux significantly, whereas the salt rejection is not changed appreciably. It is found that the pore size of the innermost layer membrane near the feed region has the most significant effect on the water flux. The water flux increases sharply with the increase of pore diameter and the salt rejection remains totally higher than 80%. Moreover, the RO membrane with a special Type 3 structure exhibits excellent performance in seawater desalination, specifically, the ultrahigh water flux reaches 20029 L·cm<sup>–2</sup>·d<sup>–1</sup> and the super salt rejection arrives at 94%. The research results further clarify and verify the mechanism of the temporal selectivity in RO process, and improve the water flux under the condition of the same membrane thickness by designing gradient hole. The findings can conduce to the in-depth theoretical understanding of porous graphene-based membranes and designing and developing the large-scale seawater desalination devices and water filtration equipment." @default.
- W4293146095 created "2022-08-27" @default.
- W4293146095 creator A5001191710 @default.
- W4293146095 creator A5030093874 @default.
- W4293146095 creator A5053249057 @default.
- W4293146095 creator A5058479146 @default.
- W4293146095 creator A5073904408 @default.
- W4293146095 creator A5075123641 @default.
- W4293146095 date "2022-01-01" @default.
- W4293146095 modified "2023-09-26" @default.
- W4293146095 title "Temporal reverse osmotic salt filtration mechanism of multi-layered porous graphene" @default.
- W4293146095 cites W1928037744 @default.
- W4293146095 cites W1981222737 @default.
- W4293146095 cites W2165172960 @default.
- W4293146095 cites W2167061414 @default.
- W4293146095 cites W2176684529 @default.
- W4293146095 cites W2332136976 @default.
- W4293146095 cites W2537424594 @default.
- W4293146095 cites W2563394788 @default.
- W4293146095 cites W2580411523 @default.
- W4293146095 cites W2585429272 @default.
- W4293146095 cites W2592986177 @default.
- W4293146095 cites W2610873649 @default.
- W4293146095 cites W2723062217 @default.
- W4293146095 cites W2747681850 @default.
- W4293146095 cites W2748810494 @default.
- W4293146095 cites W2755639092 @default.
- W4293146095 cites W2761130804 @default.
- W4293146095 cites W2770075505 @default.
- W4293146095 cites W2789128101 @default.
- W4293146095 cites W2792346191 @default.
- W4293146095 cites W2795560171 @default.
- W4293146095 cites W2803519923 @default.
- W4293146095 cites W2889044460 @default.
- W4293146095 cites W2901600261 @default.
- W4293146095 cites W2922005592 @default.
- W4293146095 cites W2951017607 @default.
- W4293146095 cites W2951444056 @default.
- W4293146095 cites W2958810737 @default.
- W4293146095 cites W2989467491 @default.
- W4293146095 cites W3066945214 @default.
- W4293146095 cites W3109204709 @default.
- W4293146095 cites W3117669380 @default.
- W4293146095 doi "https://doi.org/10.7498/aps.71.20212283" @default.
- W4293146095 hasPublicationYear "2022" @default.
- W4293146095 type Work @default.
- W4293146095 citedByCount "0" @default.
- W4293146095 crossrefType "journal-article" @default.
- W4293146095 hasAuthorship W4293146095A5001191710 @default.
- W4293146095 hasAuthorship W4293146095A5030093874 @default.
- W4293146095 hasAuthorship W4293146095A5053249057 @default.
- W4293146095 hasAuthorship W4293146095A5058479146 @default.
- W4293146095 hasAuthorship W4293146095A5073904408 @default.
- W4293146095 hasAuthorship W4293146095A5075123641 @default.
- W4293146095 hasBestOaLocation W42931460951 @default.
- W4293146095 hasConcept C105569014 @default.
- W4293146095 hasConcept C118792377 @default.
- W4293146095 hasConcept C121332964 @default.
- W4293146095 hasConcept C127413603 @default.
- W4293146095 hasConcept C130797344 @default.
- W4293146095 hasConcept C141795571 @default.
- W4293146095 hasConcept C147597530 @default.
- W4293146095 hasConcept C159467904 @default.
- W4293146095 hasConcept C159985019 @default.
- W4293146095 hasConcept C161790260 @default.
- W4293146095 hasConcept C171250308 @default.
- W4293146095 hasConcept C175634916 @default.
- W4293146095 hasConcept C178790620 @default.
- W4293146095 hasConcept C185592680 @default.
- W4293146095 hasConcept C192562407 @default.
- W4293146095 hasConcept C195268267 @default.
- W4293146095 hasConcept C2776870568 @default.
- W4293146095 hasConcept C30080830 @default.
- W4293146095 hasConcept C41625074 @default.
- W4293146095 hasConcept C42360764 @default.
- W4293146095 hasConcept C55493867 @default.
- W4293146095 hasConcept C59593255 @default.
- W4293146095 hasConcept C6648577 @default.
- W4293146095 hasConcept C97355855 @default.
- W4293146095 hasConceptScore W4293146095C105569014 @default.
- W4293146095 hasConceptScore W4293146095C118792377 @default.
- W4293146095 hasConceptScore W4293146095C121332964 @default.
- W4293146095 hasConceptScore W4293146095C127413603 @default.
- W4293146095 hasConceptScore W4293146095C130797344 @default.
- W4293146095 hasConceptScore W4293146095C141795571 @default.
- W4293146095 hasConceptScore W4293146095C147597530 @default.
- W4293146095 hasConceptScore W4293146095C159467904 @default.
- W4293146095 hasConceptScore W4293146095C159985019 @default.
- W4293146095 hasConceptScore W4293146095C161790260 @default.
- W4293146095 hasConceptScore W4293146095C171250308 @default.
- W4293146095 hasConceptScore W4293146095C175634916 @default.
- W4293146095 hasConceptScore W4293146095C178790620 @default.
- W4293146095 hasConceptScore W4293146095C185592680 @default.
- W4293146095 hasConceptScore W4293146095C192562407 @default.
- W4293146095 hasConceptScore W4293146095C195268267 @default.
- W4293146095 hasConceptScore W4293146095C2776870568 @default.
- W4293146095 hasConceptScore W4293146095C30080830 @default.
- W4293146095 hasConceptScore W4293146095C41625074 @default.