Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293530410> ?p ?o ?g. }
- W4293530410 endingPage "6256" @default.
- W4293530410 startingPage "6256" @default.
- W4293530410 abstract "The application of intelligent equipment and technologies such as robots and unmanned vehicles is an important part of the construction of intelligent mines, and has become China’s national coal energy development strategy and the consensus of the coal industry. Environment perception and instant positioning is one of the key technologies destined to realize unmanned and autonomous navigation in underground coal mines, and simultaneous location and mapping (SLAM) is an effective method of deploying this key technology. The underground space of a coal mine is long and narrow, the environment is complex and changeable, the structure is complex and irregular, and the lighting is poor. This is a typical unstructured environment, which poses a great challenge to SLAM. This paper summarizes the current research status of underground coal mine map construction based on visual SLAM and Lidar SLAM, and analyzes the defects of the LeGO-LOAM algorithm, such as loopback detection errors or omissions. We use SegMatch to improve the loopback detection module of LeGO-LOAM, use the iterative closest point (ICP) algorithm to optimize the global map, then propose an improved SLAM algorithm, namely LeGO-LOAM-SM, and describe its principle and implementation. The performance of the LeGO-LOAM-SM was also tested using the KITTI dataset 00 sequence and SLAM experimental data collected in two coal mine underground simulation scenarios, and the performance indexes such as the map construction effect, trajectory overlap and length deviation, absolute trajectory error (ATE), and relative pose error (RPE) were analyzed. The results show that the map constructed by LeGO-LOAM-SM is clearer, has a better loopback effect, the estimated trajectory is smoother and more accurate, and the translation and rotation accuracy is improved by approximately 5%. This can construct more accurate point cloud map and low drift position estimation, which verifies the effectiveness and accuracy of the improved algorithm. Finally, to satisfy the navigation requirements, the construction method of a two-dimensional occupancy grid map was studied, and the underground coal mine simulation environment test was carried out. The results show that the constructed raster map can effectively filter out outlier noise such as dynamic obstacles, has a mapping accuracy of 0.01 m, and the required storage space compared with the point cloud map is reduced by three orders of magnitude. The research results enrich the SLAM algorithm and implementation in unstructured environments such as underground coal mines, and help to solve the problems of environment perception, real-time positioning, and the navigation of coal mine robots and unmanned vehicles." @default.
- W4293530410 created "2022-08-30" @default.
- W4293530410 creator A5000979147 @default.
- W4293530410 creator A5017707460 @default.
- W4293530410 creator A5037288492 @default.
- W4293530410 creator A5044149277 @default.
- W4293530410 date "2022-08-27" @default.
- W4293530410 modified "2023-09-30" @default.
- W4293530410 title "Research on Underground Coal Mine Map Construction Method Based on LeGO-LOAM Improved Algorithm" @default.
- W4293530410 cites W1509463039 @default.
- W4293530410 cites W1972485825 @default.
- W4293530410 cites W1990012555 @default.
- W4293530410 cites W2024039087 @default.
- W4293530410 cites W2133844819 @default.
- W4293530410 cites W2134249763 @default.
- W4293530410 cites W2148823327 @default.
- W4293530410 cites W2150066425 @default.
- W4293530410 cites W2277848489 @default.
- W4293530410 cites W2296228853 @default.
- W4293530410 cites W2568719160 @default.
- W4293530410 cites W2737444374 @default.
- W4293530410 cites W2745859992 @default.
- W4293530410 cites W2775226889 @default.
- W4293530410 cites W2902610326 @default.
- W4293530410 cites W2909908358 @default.
- W4293530410 cites W2910489334 @default.
- W4293530410 cites W2940375009 @default.
- W4293530410 cites W2954312769 @default.
- W4293530410 cites W2970345194 @default.
- W4293530410 cites W2999823471 @default.
- W4293530410 cites W3090298435 @default.
- W4293530410 cites W3093830562 @default.
- W4293530410 cites W3094395802 @default.
- W4293530410 cites W3096741513 @default.
- W4293530410 cites W3099455272 @default.
- W4293530410 cites W3130609318 @default.
- W4293530410 cites W3145715369 @default.
- W4293530410 cites W3164083741 @default.
- W4293530410 cites W3165610079 @default.
- W4293530410 cites W3198517319 @default.
- W4293530410 cites W3205103819 @default.
- W4293530410 cites W3209959857 @default.
- W4293530410 cites W3217105406 @default.
- W4293530410 cites W4205686350 @default.
- W4293530410 cites W4212966960 @default.
- W4293530410 cites W4213267237 @default.
- W4293530410 cites W4285147600 @default.
- W4293530410 cites W4292544413 @default.
- W4293530410 doi "https://doi.org/10.3390/en15176256" @default.
- W4293530410 hasPublicationYear "2022" @default.
- W4293530410 type Work @default.
- W4293530410 citedByCount "6" @default.
- W4293530410 countsByYear W42935304102023 @default.
- W4293530410 crossrefType "journal-article" @default.
- W4293530410 hasAuthorship W4293530410A5000979147 @default.
- W4293530410 hasAuthorship W4293530410A5017707460 @default.
- W4293530410 hasAuthorship W4293530410A5037288492 @default.
- W4293530410 hasAuthorship W4293530410A5044149277 @default.
- W4293530410 hasBestOaLocation W42935304101 @default.
- W4293530410 hasConcept C108615695 @default.
- W4293530410 hasConcept C113578266 @default.
- W4293530410 hasConcept C11413529 @default.
- W4293530410 hasConcept C121332964 @default.
- W4293530410 hasConcept C127413603 @default.
- W4293530410 hasConcept C1276947 @default.
- W4293530410 hasConcept C13662910 @default.
- W4293530410 hasConcept C154945302 @default.
- W4293530410 hasConcept C159390177 @default.
- W4293530410 hasConcept C159750122 @default.
- W4293530410 hasConcept C19966478 @default.
- W4293530410 hasConcept C26517878 @default.
- W4293530410 hasConcept C2779188883 @default.
- W4293530410 hasConcept C31972630 @default.
- W4293530410 hasConcept C38652104 @default.
- W4293530410 hasConcept C39432304 @default.
- W4293530410 hasConcept C41008148 @default.
- W4293530410 hasConcept C518851703 @default.
- W4293530410 hasConcept C548081761 @default.
- W4293530410 hasConcept C86369673 @default.
- W4293530410 hasConcept C90509273 @default.
- W4293530410 hasConceptScore W4293530410C108615695 @default.
- W4293530410 hasConceptScore W4293530410C113578266 @default.
- W4293530410 hasConceptScore W4293530410C11413529 @default.
- W4293530410 hasConceptScore W4293530410C121332964 @default.
- W4293530410 hasConceptScore W4293530410C127413603 @default.
- W4293530410 hasConceptScore W4293530410C1276947 @default.
- W4293530410 hasConceptScore W4293530410C13662910 @default.
- W4293530410 hasConceptScore W4293530410C154945302 @default.
- W4293530410 hasConceptScore W4293530410C159390177 @default.
- W4293530410 hasConceptScore W4293530410C159750122 @default.
- W4293530410 hasConceptScore W4293530410C19966478 @default.
- W4293530410 hasConceptScore W4293530410C26517878 @default.
- W4293530410 hasConceptScore W4293530410C2779188883 @default.
- W4293530410 hasConceptScore W4293530410C31972630 @default.
- W4293530410 hasConceptScore W4293530410C38652104 @default.
- W4293530410 hasConceptScore W4293530410C39432304 @default.
- W4293530410 hasConceptScore W4293530410C41008148 @default.
- W4293530410 hasConceptScore W4293530410C518851703 @default.