Matches in SemOpenAlex for { <https://semopenalex.org/work/W4297341772> ?p ?o ?g. }
- W4297341772 abstract "Abstract Due to the unresectability of normal brain tissue and the extensive invasive growth of the malignant tumor, the boundary between the tumor and surrounding healthy brain tissue or blood vessels is blurred, which greatly affects the accuracy of diagnosis and treatment. Meanwhile, with the growth of data information and the development of computer equipment, it is extremely time-consuming and laborious to rely on the traditional manual segmentation of brain medical images. To solve the above problems, this paper proposes a multi-input Unet model based on the integrated block and the aggregation connection to achieve efficient and accurate segmentation of tumor structure. Besides, this paper studies two-dimensional (2D) transverse brain tumor slices to meet the needs of doctors in the actual diagnosis. It solves the low-resolution problem in sagittal and coronal planes, which can effectively improve memory efficiency. The proposed algorithm is innovative in three aspects. Firstly, by inputting the mask images which can effectively represent the tumor location characteristics, it can provide more information about the spatial relationship to alleviate the problems of fuzzy boundary and low contrast between the lesion region and healthy brain tissue. Then, the integrated block extracts the tumor local information in different receptive domains by a multi-scale convolution kernel. The aggregation connection realizes the implicit deep connection of context information, which combines the shallow and deep information of the brain with strong geometric spatial relationships. Meanwhile, to effectively alleviate the waste of memory resources caused by redundant and background information in medical images, the amount of calculation in model training is reduced by dimension reduction of the feature map. It can also overcome the gradient vanishing problem caused by network deepening. In this paper, an ablation experiment is used to verify the innovation of the proposed algorithm on the BraTS dataset, which compares with the state-of-the-art brain tumor segmentation methods. The accuracy of the proposed multi-input Unet model for the whole tumor and core lesion is 0.92 and 0.90, respectively." @default.
- W4297341772 created "2022-09-28" @default.
- W4297341772 creator A5006822602 @default.
- W4297341772 creator A5009378664 @default.
- W4297341772 date "2022-09-27" @default.
- W4297341772 modified "2023-10-17" @default.
- W4297341772 title "Multi-input Unet model based on the integrated block and the aggregation connection for MRI brain tumor segmentation" @default.
- W4297341772 cites W1964306030 @default.
- W4297341772 cites W2558944992 @default.
- W4297341772 cites W2587828787 @default.
- W4297341772 cites W2599522320 @default.
- W4297341772 cites W2618530766 @default.
- W4297341772 cites W2744130673 @default.
- W4297341772 cites W2756389006 @default.
- W4297341772 cites W2765490497 @default.
- W4297341772 cites W2782598129 @default.
- W4297341772 cites W2782920681 @default.
- W4297341772 cites W2791575870 @default.
- W4297341772 cites W2888469947 @default.
- W4297341772 cites W2890520682 @default.
- W4297341772 cites W2895056585 @default.
- W4297341772 cites W2896613673 @default.
- W4297341772 cites W2901051598 @default.
- W4297341772 cites W2904087072 @default.
- W4297341772 cites W2904488225 @default.
- W4297341772 cites W2905017682 @default.
- W4297341772 cites W2907769417 @default.
- W4297341772 cites W2912574022 @default.
- W4297341772 cites W2943070796 @default.
- W4297341772 cites W2947583263 @default.
- W4297341772 cites W2948542848 @default.
- W4297341772 cites W2952378269 @default.
- W4297341772 cites W2963016155 @default.
- W4297341772 cites W2963110069 @default.
- W4297341772 cites W2963356165 @default.
- W4297341772 cites W2964227007 @default.
- W4297341772 cites W2964340594 @default.
- W4297341772 cites W2967949483 @default.
- W4297341772 cites W2974878728 @default.
- W4297341772 cites W2978368526 @default.
- W4297341772 cites W2979754953 @default.
- W4297341772 cites W2982185347 @default.
- W4297341772 cites W2983509244 @default.
- W4297341772 cites W2995812281 @default.
- W4297341772 cites W2998401461 @default.
- W4297341772 cites W3001670762 @default.
- W4297341772 cites W3007007406 @default.
- W4297341772 cites W3012536972 @default.
- W4297341772 cites W3013630101 @default.
- W4297341772 cites W3017270631 @default.
- W4297341772 cites W3029034078 @default.
- W4297341772 cites W3035540747 @default.
- W4297341772 cites W3036170900 @default.
- W4297341772 cites W3040152568 @default.
- W4297341772 cites W3044256341 @default.
- W4297341772 cites W3049459429 @default.
- W4297341772 cites W3100321043 @default.
- W4297341772 cites W3108411643 @default.
- W4297341772 cites W3109184763 @default.
- W4297341772 cites W3119948122 @default.
- W4297341772 cites W3131355499 @default.
- W4297341772 cites W3135442606 @default.
- W4297341772 cites W3151706544 @default.
- W4297341772 cites W3162686795 @default.
- W4297341772 cites W3169655794 @default.
- W4297341772 cites W3193581568 @default.
- W4297341772 cites W3195893328 @default.
- W4297341772 cites W3198147101 @default.
- W4297341772 cites W4211132876 @default.
- W4297341772 cites W4211260562 @default.
- W4297341772 cites W4288412070 @default.
- W4297341772 doi "https://doi.org/10.21203/rs.3.rs-1014002/v1" @default.
- W4297341772 hasPublicationYear "2022" @default.
- W4297341772 type Work @default.
- W4297341772 citedByCount "0" @default.
- W4297341772 crossrefType "posted-content" @default.
- W4297341772 hasAuthorship W4297341772A5006822602 @default.
- W4297341772 hasAuthorship W4297341772A5009378664 @default.
- W4297341772 hasBestOaLocation W42973417721 @default.
- W4297341772 hasConcept C114614502 @default.
- W4297341772 hasConcept C126838900 @default.
- W4297341772 hasConcept C13355873 @default.
- W4297341772 hasConcept C151730666 @default.
- W4297341772 hasConcept C153180895 @default.
- W4297341772 hasConcept C154945302 @default.
- W4297341772 hasConcept C178910020 @default.
- W4297341772 hasConcept C2524010 @default.
- W4297341772 hasConcept C2777210771 @default.
- W4297341772 hasConcept C2779343474 @default.
- W4297341772 hasConcept C31972630 @default.
- W4297341772 hasConcept C33923547 @default.
- W4297341772 hasConcept C41008148 @default.
- W4297341772 hasConcept C71924100 @default.
- W4297341772 hasConcept C74193536 @default.
- W4297341772 hasConcept C86803240 @default.
- W4297341772 hasConcept C89600930 @default.
- W4297341772 hasConceptScore W4297341772C114614502 @default.
- W4297341772 hasConceptScore W4297341772C126838900 @default.
- W4297341772 hasConceptScore W4297341772C13355873 @default.
- W4297341772 hasConceptScore W4297341772C151730666 @default.