Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306977092> ?p ?o ?g. }
- W4306977092 endingPage "119056" @default.
- W4306977092 startingPage "119056" @default.
- W4306977092 abstract "We present Multiscale Extrapolative Learning Algorithm (MELA) as a novel artificial-intelligence (AI)-based data extrapolator. MELA is capable of extending temporally limited local hydroclimatic measurements at fine spatial resolution to longer periods, using remotely-sensed hydroclimatic data readily available for longer periods but at coarse spatial resolution. We demonstrate the implementation of MELA to extrapolate the monthly local soil moisture measurements at multiple depths from 2015–2021 to 1958–2021 in a semi-arid region. Such data extrapolators are imperative to generate longer historical data needed to adequately train and test AI models while enhancing the chance of capturing the effects of extreme climates on spatially variable soil moisture. The MELA-extrapolated local soil moisture subsequently allowed the construction of monthly time-series of field-scale soil moisture distributions with a normalized accuracy of 72% and prediction of countywide annual winter wheat yields – using MELA-extrapolated soil moisture data and eXplainable AI (XAI) – with a normalized accuracy of 81%. Furthermore, the XAI model ranked the predictors based on their importance in estimating winter wheat yields, in which the soil moisture near the surface and in the root zone and precipitation totals were found to be more influential than temperature on crop yields in the semi-arid region. The XAI model also unveiled the inflection points of the predictors beyond which crop yields would increase or decrease. Moreover, the AI-based analyses in conjunction with climate projections from global climate models suggest potential reductions in rainfed crop yields in the study area by 2050 and 2100 in the absence of climate-resilient mitigation and adaptation plans." @default.
- W4306977092 created "2022-10-22" @default.
- W4306977092 creator A5008620176 @default.
- W4306977092 creator A5040681021 @default.
- W4306977092 creator A5052768227 @default.
- W4306977092 creator A5061183440 @default.
- W4306977092 creator A5066796563 @default.
- W4306977092 creator A5066843170 @default.
- W4306977092 creator A5067159422 @default.
- W4306977092 date "2023-03-01" @default.
- W4306977092 modified "2023-10-18" @default.
- W4306977092 title "Multiscale extrapolative learning algorithm for predictive soil moisture modeling & applications" @default.
- W4306977092 cites W1991287071 @default.
- W4306977092 cites W1997065014 @default.
- W4306977092 cites W2005348293 @default.
- W4306977092 cites W2027554150 @default.
- W4306977092 cites W2046612965 @default.
- W4306977092 cites W2056132907 @default.
- W4306977092 cites W2067087368 @default.
- W4306977092 cites W2079998014 @default.
- W4306977092 cites W2111626115 @default.
- W4306977092 cites W2175231548 @default.
- W4306977092 cites W2282821441 @default.
- W4306977092 cites W2283837117 @default.
- W4306977092 cites W2496225726 @default.
- W4306977092 cites W2568026663 @default.
- W4306977092 cites W2573696466 @default.
- W4306977092 cites W2765333801 @default.
- W4306977092 cites W2782903275 @default.
- W4306977092 cites W2784327149 @default.
- W4306977092 cites W2891503716 @default.
- W4306977092 cites W2905933210 @default.
- W4306977092 cites W2907334172 @default.
- W4306977092 cites W2911964244 @default.
- W4306977092 cites W2917202993 @default.
- W4306977092 cites W2940194540 @default.
- W4306977092 cites W2945526235 @default.
- W4306977092 cites W2946402909 @default.
- W4306977092 cites W2963095307 @default.
- W4306977092 cites W2972050955 @default.
- W4306977092 cites W2996917086 @default.
- W4306977092 cites W2999615587 @default.
- W4306977092 cites W3022298391 @default.
- W4306977092 cites W3028252789 @default.
- W4306977092 cites W3035353528 @default.
- W4306977092 cites W3047335959 @default.
- W4306977092 cites W3098357169 @default.
- W4306977092 cites W3102476541 @default.
- W4306977092 cites W3102782390 @default.
- W4306977092 cites W3103444592 @default.
- W4306977092 cites W3117520445 @default.
- W4306977092 cites W3179009462 @default.
- W4306977092 cites W3180233907 @default.
- W4306977092 cites W3205832097 @default.
- W4306977092 cites W3206266431 @default.
- W4306977092 cites W3207066068 @default.
- W4306977092 cites W4200149104 @default.
- W4306977092 cites W4200210215 @default.
- W4306977092 cites W4200334776 @default.
- W4306977092 cites W4200481565 @default.
- W4306977092 cites W4210762924 @default.
- W4306977092 cites W4213044558 @default.
- W4306977092 cites W4223559467 @default.
- W4306977092 cites W4224124791 @default.
- W4306977092 cites W4225316219 @default.
- W4306977092 doi "https://doi.org/10.1016/j.eswa.2022.119056" @default.
- W4306977092 hasPublicationYear "2023" @default.
- W4306977092 type Work @default.
- W4306977092 citedByCount "5" @default.
- W4306977092 countsByYear W43069770922023 @default.
- W4306977092 crossrefType "journal-article" @default.
- W4306977092 hasAuthorship W4306977092A5008620176 @default.
- W4306977092 hasAuthorship W4306977092A5040681021 @default.
- W4306977092 hasAuthorship W4306977092A5052768227 @default.
- W4306977092 hasAuthorship W4306977092A5061183440 @default.
- W4306977092 hasAuthorship W4306977092A5066796563 @default.
- W4306977092 hasAuthorship W4306977092A5066843170 @default.
- W4306977092 hasAuthorship W4306977092A5067159422 @default.
- W4306977092 hasBestOaLocation W43069770921 @default.
- W4306977092 hasConcept C107054158 @default.
- W4306977092 hasConcept C111368507 @default.
- W4306977092 hasConcept C127313418 @default.
- W4306977092 hasConcept C132651083 @default.
- W4306977092 hasConcept C150772632 @default.
- W4306977092 hasConcept C151730666 @default.
- W4306977092 hasConcept C153294291 @default.
- W4306977092 hasConcept C159390177 @default.
- W4306977092 hasConcept C168754636 @default.
- W4306977092 hasConcept C176864760 @default.
- W4306977092 hasConcept C187320778 @default.
- W4306977092 hasConcept C205649164 @default.
- W4306977092 hasConcept C24939127 @default.
- W4306977092 hasConcept C2778755073 @default.
- W4306977092 hasConcept C39432304 @default.
- W4306977092 hasConcept C49204034 @default.
- W4306977092 hasConcept C58640448 @default.
- W4306977092 hasConceptScore W4306977092C107054158 @default.
- W4306977092 hasConceptScore W4306977092C111368507 @default.