Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308367998> ?p ?o ?g. }
- W4308367998 endingPage "1214" @default.
- W4308367998 startingPage "1205" @default.
- W4308367998 abstract "Patient-specific quality assurance (PSQA) is an indispensable and essential procedure in radiotherapy workflow, and several studies have been done to develop prediction models based on the conventional C-arm linac of single-layered multileaf collimator (MLC) with machine learning (ML) and deep learning techniques to predict PSQA results and improve efficiency. Recently, a newly designed O-ring gantry linac Halcyon equipped with unique jawless stacked-and-staggered dual-layered MLC was released. However, few studies have focused on developing PSQA prediction models for this novel dual-layered MLC system.To evaluate the performance of ML to predict PSQA results of fixed field intensity-modulated radiation therapy (FF-IMRT) plans for linac equipped with dual-layered MLC.A total of 213 FF-IMRT treatment plans, including 1383 beams from various treatment sites, were selected and delivered with portal dosimetry verification on Halcyon linac. Gamma analysis was performed using 1%/1, 2%/2, and 3%/2 mm criteria with a 10% threshold. The training set (TS) of ML models consisted of 1106 beams, and an independent evaluation set (ES) consisted of 277 beams. For each beam, 33 complexity metrics were extracted as input data for training models. Three ML algorithms (gradient boosting decision tree/GBDT, random forest/RF, and Poisson Lasso/PL) were utilized to build the models and predict gamma passing rates (GPRs). To improve the prediction accuracy in the rare region, a method of reweighting for TS has been performed and compared to the unweighted results. The importance of complexity metrics was studied by permuted interesting features.The GBDT model had the best performance in this study. In ES, the minimal mean prediction error for unweighted results was 1.93%, 1.16%, 0.78% under 1%/1, 2%/2, and 3%/2 mm criteria, respectively, from GBDT model. Comparing to the unweighted results, the models after reweighting gained up to 30% improvement in the rare region, whereas the overall prediction error was slightly worse depending on the kind of models. For feature importance, 2 tree-based models (GBDT and RF) had in common the top 10 most important metrics as well as the same metric with the largest impact.For linac equipped with novel dual-layered MLC, the ML model based on GBDT algorithm shows a certain degree of accuracy for GPRs prediction. The specific ML model for dual-layered MLC configuration could be a useful tool for physicists detecting PSQA measurement failures." @default.
- W4308367998 created "2022-11-11" @default.
- W4308367998 creator A5014069367 @default.
- W4308367998 creator A5030172894 @default.
- W4308367998 creator A5046805621 @default.
- W4308367998 creator A5073285625 @default.
- W4308367998 creator A5081117163 @default.
- W4308367998 creator A5081519608 @default.
- W4308367998 date "2022-11-25" @default.
- W4308367998 modified "2023-10-15" @default.
- W4308367998 title "Patient‐specific quality assurance prediction models based on machine learning for novel dual‐layered MLC linac" @default.
- W4308367998 cites W1492221433 @default.
- W4308367998 cites W1564093136 @default.
- W4308367998 cites W1678356000 @default.
- W4308367998 cites W1969138015 @default.
- W4308367998 cites W1973073129 @default.
- W4308367998 cites W1973628995 @default.
- W4308367998 cites W1973715126 @default.
- W4308367998 cites W1974392680 @default.
- W4308367998 cites W1995822876 @default.
- W4308367998 cites W2017016280 @default.
- W4308367998 cites W2027835608 @default.
- W4308367998 cites W2030442960 @default.
- W4308367998 cites W2048862822 @default.
- W4308367998 cites W2055073594 @default.
- W4308367998 cites W2098596356 @default.
- W4308367998 cites W2112385297 @default.
- W4308367998 cites W2120950852 @default.
- W4308367998 cites W2158143121 @default.
- W4308367998 cites W2472443435 @default.
- W4308367998 cites W2749375587 @default.
- W4308367998 cites W2791042095 @default.
- W4308367998 cites W2794962342 @default.
- W4308367998 cites W2887229430 @default.
- W4308367998 cites W2924789106 @default.
- W4308367998 cites W2929904232 @default.
- W4308367998 cites W2959785915 @default.
- W4308367998 cites W2964998168 @default.
- W4308367998 cites W2966460997 @default.
- W4308367998 cites W3021981017 @default.
- W4308367998 cites W3045359972 @default.
- W4308367998 cites W3089255517 @default.
- W4308367998 cites W3114077287 @default.
- W4308367998 cites W4294541781 @default.
- W4308367998 doi "https://doi.org/10.1002/mp.16091" @default.
- W4308367998 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36342293" @default.
- W4308367998 hasPublicationYear "2022" @default.
- W4308367998 type Work @default.
- W4308367998 citedByCount "1" @default.
- W4308367998 countsByYear W43083679982023 @default.
- W4308367998 crossrefType "journal-article" @default.
- W4308367998 hasAuthorship W4308367998A5014069367 @default.
- W4308367998 hasAuthorship W4308367998A5030172894 @default.
- W4308367998 hasAuthorship W4308367998A5046805621 @default.
- W4308367998 hasAuthorship W4308367998A5073285625 @default.
- W4308367998 hasAuthorship W4308367998A5081117163 @default.
- W4308367998 hasAuthorship W4308367998A5081519608 @default.
- W4308367998 hasBestOaLocation W43083679981 @default.
- W4308367998 hasConcept C106436119 @default.
- W4308367998 hasConcept C11413529 @default.
- W4308367998 hasConcept C120665830 @default.
- W4308367998 hasConcept C121332964 @default.
- W4308367998 hasConcept C142724271 @default.
- W4308367998 hasConcept C154945302 @default.
- W4308367998 hasConcept C161471255 @default.
- W4308367998 hasConcept C168834538 @default.
- W4308367998 hasConcept C177212765 @default.
- W4308367998 hasConcept C180048950 @default.
- W4308367998 hasConcept C2778618615 @default.
- W4308367998 hasConcept C2989005 @default.
- W4308367998 hasConcept C41008148 @default.
- W4308367998 hasConcept C71924100 @default.
- W4308367998 hasConcept C75088862 @default.
- W4308367998 hasConcept C77088390 @default.
- W4308367998 hasConceptScore W4308367998C106436119 @default.
- W4308367998 hasConceptScore W4308367998C11413529 @default.
- W4308367998 hasConceptScore W4308367998C120665830 @default.
- W4308367998 hasConceptScore W4308367998C121332964 @default.
- W4308367998 hasConceptScore W4308367998C142724271 @default.
- W4308367998 hasConceptScore W4308367998C154945302 @default.
- W4308367998 hasConceptScore W4308367998C161471255 @default.
- W4308367998 hasConceptScore W4308367998C168834538 @default.
- W4308367998 hasConceptScore W4308367998C177212765 @default.
- W4308367998 hasConceptScore W4308367998C180048950 @default.
- W4308367998 hasConceptScore W4308367998C2778618615 @default.
- W4308367998 hasConceptScore W4308367998C2989005 @default.
- W4308367998 hasConceptScore W4308367998C41008148 @default.
- W4308367998 hasConceptScore W4308367998C71924100 @default.
- W4308367998 hasConceptScore W4308367998C75088862 @default.
- W4308367998 hasConceptScore W4308367998C77088390 @default.
- W4308367998 hasIssue "2" @default.
- W4308367998 hasLocation W43083679981 @default.
- W4308367998 hasLocation W43083679982 @default.
- W4308367998 hasOpenAccess W4308367998 @default.
- W4308367998 hasPrimaryLocation W43083679981 @default.
- W4308367998 hasRelatedWork W2051858985 @default.
- W4308367998 hasRelatedWork W2070378498 @default.
- W4308367998 hasRelatedWork W2083715124 @default.