Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309235601> ?p ?o ?g. }
- W4309235601 endingPage "15" @default.
- W4309235601 startingPage "1" @default.
- W4309235601 abstract "The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data." @default.
- W4309235601 created "2022-11-25" @default.
- W4309235601 creator A5058138797 @default.
- W4309235601 creator A5062084492 @default.
- W4309235601 creator A5064527069 @default.
- W4309235601 creator A5077878137 @default.
- W4309235601 creator A5084138890 @default.
- W4309235601 creator A5089304660 @default.
- W4309235601 creator A5091902436 @default.
- W4309235601 date "2022-11-17" @default.
- W4309235601 modified "2023-09-27" @default.
- W4309235601 title "Fault Diagnosis Method for Bearing Based on Digital Twin" @default.
- W4309235601 cites W2019505419 @default.
- W4309235601 cites W2048395569 @default.
- W4309235601 cites W2261490426 @default.
- W4309235601 cites W2468457481 @default.
- W4309235601 cites W2591012903 @default.
- W4309235601 cites W2775181226 @default.
- W4309235601 cites W2800567156 @default.
- W4309235601 cites W2807272465 @default.
- W4309235601 cites W2883139641 @default.
- W4309235601 cites W2904138018 @default.
- W4309235601 cites W2939487178 @default.
- W4309235601 cites W2945468955 @default.
- W4309235601 cites W2969902687 @default.
- W4309235601 cites W3000113387 @default.
- W4309235601 cites W3001242017 @default.
- W4309235601 cites W3005789239 @default.
- W4309235601 cites W3005929968 @default.
- W4309235601 cites W3020128465 @default.
- W4309235601 cites W3026881828 @default.
- W4309235601 cites W3048983776 @default.
- W4309235601 cites W3089406903 @default.
- W4309235601 cites W3154173867 @default.
- W4309235601 cites W3168417671 @default.
- W4309235601 cites W3171436672 @default.
- W4309235601 cites W3194895745 @default.
- W4309235601 cites W3196282989 @default.
- W4309235601 cites W3204719278 @default.
- W4309235601 cites W3205891489 @default.
- W4309235601 cites W3208200946 @default.
- W4309235601 cites W4200016808 @default.
- W4309235601 cites W4200554313 @default.
- W4309235601 cites W4206926570 @default.
- W4309235601 cites W4226200875 @default.
- W4309235601 cites W4283733652 @default.
- W4309235601 cites W4283740396 @default.
- W4309235601 cites W4287854723 @default.
- W4309235601 cites W4295296516 @default.
- W4309235601 doi "https://doi.org/10.1155/2022/2982746" @default.
- W4309235601 hasPublicationYear "2022" @default.
- W4309235601 type Work @default.
- W4309235601 citedByCount "1" @default.
- W4309235601 countsByYear W43092356012023 @default.
- W4309235601 crossrefType "journal-article" @default.
- W4309235601 hasAuthorship W4309235601A5058138797 @default.
- W4309235601 hasAuthorship W4309235601A5062084492 @default.
- W4309235601 hasAuthorship W4309235601A5064527069 @default.
- W4309235601 hasAuthorship W4309235601A5077878137 @default.
- W4309235601 hasAuthorship W4309235601A5084138890 @default.
- W4309235601 hasAuthorship W4309235601A5089304660 @default.
- W4309235601 hasAuthorship W4309235601A5091902436 @default.
- W4309235601 hasBestOaLocation W43092356011 @default.
- W4309235601 hasConcept C11413529 @default.
- W4309235601 hasConcept C124101348 @default.
- W4309235601 hasConcept C127313418 @default.
- W4309235601 hasConcept C153180895 @default.
- W4309235601 hasConcept C154945302 @default.
- W4309235601 hasConcept C165205528 @default.
- W4309235601 hasConcept C175551986 @default.
- W4309235601 hasConcept C199978012 @default.
- W4309235601 hasConcept C28855332 @default.
- W4309235601 hasConcept C41008148 @default.
- W4309235601 hasConcept C50644808 @default.
- W4309235601 hasConcept C81363708 @default.
- W4309235601 hasConceptScore W4309235601C11413529 @default.
- W4309235601 hasConceptScore W4309235601C124101348 @default.
- W4309235601 hasConceptScore W4309235601C127313418 @default.
- W4309235601 hasConceptScore W4309235601C153180895 @default.
- W4309235601 hasConceptScore W4309235601C154945302 @default.
- W4309235601 hasConceptScore W4309235601C165205528 @default.
- W4309235601 hasConceptScore W4309235601C175551986 @default.
- W4309235601 hasConceptScore W4309235601C199978012 @default.
- W4309235601 hasConceptScore W4309235601C28855332 @default.
- W4309235601 hasConceptScore W4309235601C41008148 @default.
- W4309235601 hasConceptScore W4309235601C50644808 @default.
- W4309235601 hasConceptScore W4309235601C81363708 @default.
- W4309235601 hasFunder F4320321001 @default.
- W4309235601 hasLocation W43092356011 @default.
- W4309235601 hasOpenAccess W4309235601 @default.
- W4309235601 hasPrimaryLocation W43092356011 @default.
- W4309235601 hasRelatedWork W1977667307 @default.
- W4309235601 hasRelatedWork W2391174204 @default.
- W4309235601 hasRelatedWork W2391866417 @default.
- W4309235601 hasRelatedWork W2767651786 @default.
- W4309235601 hasRelatedWork W2906317684 @default.
- W4309235601 hasRelatedWork W2910957091 @default.
- W4309235601 hasRelatedWork W2912288872 @default.