Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309662531> ?p ?o ?g. }
- W4309662531 abstract "Abstract Importance: Several short forms of the Stroke Impact Scale Version 3.0 (SIS 3.0) have been proposed in order to decrease its administration time of about 20 min. However, none of the short-form scores are comparable to those of the original measure. Objective: To develop a short-form SIS 3.0 using a machine learning algorithm (ML–SIS). Design: We developed the ML–SIS in three stages. First, we calculated the frequencies of items having the highest contribution to predicting the original domain scores across 50 deep neural networks. Second, we iteratively selected the items showing the highest frequency until the coefficient of determination (R2) of each domain was ≥.90. Third, we examined the comparability and concurrent and convergent validity of the ML–SIS. Setting: Hospitals. Participants: We extracted complete data for 1,010 patients from an existing data set. Results: Twenty-eight items were selected for the ML–SIS. High average R2s (.90–.96) and small average residuals (mean absolute errors and root-mean-square errors = 0.49–2.84) indicate good comparability. High correlations (rs = .95–.98) between the eight domain scores of the ML–SIS and the SIS 3.0 indicate sufficient concurrent validity. Similar interdomain correlations between the two measures indicate satisfactory convergent validity. Conclusions and Relevance: The ML–SIS uses about half of the items in the SIS 3.0, has an estimated administration time of 10 min, and provides valid scores comparable to those of the original measure. Thus, the ML–SIS may be an efficient alternative to the SIS 3.0. What This Article Adds: The ML–SIS, a short form of the SIS 3.0 developed using a machine learning algorithm, shows good potential to be an efficient and informative measure for clinical settings, providing scores that are valid and comparable to those of the original measure." @default.
- W4309662531 created "2022-11-29" @default.
- W4309662531 creator A5004693919 @default.
- W4309662531 creator A5020829553 @default.
- W4309662531 creator A5024038302 @default.
- W4309662531 creator A5052521573 @default.
- W4309662531 creator A5055190975 @default.
- W4309662531 creator A5072371285 @default.
- W4309662531 creator A5076992007 @default.
- W4309662531 creator A5090229064 @default.
- W4309662531 date "2022-11-01" @default.
- W4309662531 modified "2023-09-26" @default.
- W4309662531 title "Development of a Short-Form Stroke Impact Scale Using a Machine Learning Algorithm for Patients at the Subacute Stage" @default.
- W4309662531 cites W1547120826 @default.
- W4309662531 cites W1806891645 @default.
- W4309662531 cites W1971274529 @default.
- W4309662531 cites W1986141517 @default.
- W4309662531 cites W2003696142 @default.
- W4309662531 cites W2080504768 @default.
- W4309662531 cites W2083844448 @default.
- W4309662531 cites W2085484919 @default.
- W4309662531 cites W2088729244 @default.
- W4309662531 cites W2102148524 @default.
- W4309662531 cites W2108894886 @default.
- W4309662531 cites W2119864981 @default.
- W4309662531 cites W2142850822 @default.
- W4309662531 cites W2155314781 @default.
- W4309662531 cites W2164551677 @default.
- W4309662531 cites W2166458609 @default.
- W4309662531 cites W2279074305 @default.
- W4309662531 cites W2299498697 @default.
- W4309662531 cites W2407521048 @default.
- W4309662531 cites W2598909094 @default.
- W4309662531 cites W2809960885 @default.
- W4309662531 cites W2888081983 @default.
- W4309662531 cites W3011124015 @default.
- W4309662531 cites W3121817874 @default.
- W4309662531 cites W4254751698 @default.
- W4309662531 cites W4307833091 @default.
- W4309662531 cites W4362062050 @default.
- W4309662531 doi "https://doi.org/10.5014/ajot.2022.049136" @default.
- W4309662531 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36410404" @default.
- W4309662531 hasPublicationYear "2022" @default.
- W4309662531 type Work @default.
- W4309662531 citedByCount "1" @default.
- W4309662531 countsByYear W43096625312023 @default.
- W4309662531 crossrefType "journal-article" @default.
- W4309662531 hasAuthorship W4309662531A5004693919 @default.
- W4309662531 hasAuthorship W4309662531A5020829553 @default.
- W4309662531 hasAuthorship W4309662531A5024038302 @default.
- W4309662531 hasAuthorship W4309662531A5052521573 @default.
- W4309662531 hasAuthorship W4309662531A5055190975 @default.
- W4309662531 hasAuthorship W4309662531A5072371285 @default.
- W4309662531 hasAuthorship W4309662531A5076992007 @default.
- W4309662531 hasAuthorship W4309662531A5090229064 @default.
- W4309662531 hasConcept C105795698 @default.
- W4309662531 hasConcept C11413529 @default.
- W4309662531 hasConcept C114614502 @default.
- W4309662531 hasConcept C121332964 @default.
- W4309662531 hasConcept C124101348 @default.
- W4309662531 hasConcept C134306372 @default.
- W4309662531 hasConcept C154945302 @default.
- W4309662531 hasConcept C171606756 @default.
- W4309662531 hasConcept C197947376 @default.
- W4309662531 hasConcept C198999979 @default.
- W4309662531 hasConcept C2778755073 @default.
- W4309662531 hasConcept C2780009758 @default.
- W4309662531 hasConcept C3018868096 @default.
- W4309662531 hasConcept C33923547 @default.
- W4309662531 hasConcept C36503486 @default.
- W4309662531 hasConcept C41008148 @default.
- W4309662531 hasConcept C62520636 @default.
- W4309662531 hasConcept C71924100 @default.
- W4309662531 hasConceptScore W4309662531C105795698 @default.
- W4309662531 hasConceptScore W4309662531C11413529 @default.
- W4309662531 hasConceptScore W4309662531C114614502 @default.
- W4309662531 hasConceptScore W4309662531C121332964 @default.
- W4309662531 hasConceptScore W4309662531C124101348 @default.
- W4309662531 hasConceptScore W4309662531C134306372 @default.
- W4309662531 hasConceptScore W4309662531C154945302 @default.
- W4309662531 hasConceptScore W4309662531C171606756 @default.
- W4309662531 hasConceptScore W4309662531C197947376 @default.
- W4309662531 hasConceptScore W4309662531C198999979 @default.
- W4309662531 hasConceptScore W4309662531C2778755073 @default.
- W4309662531 hasConceptScore W4309662531C2780009758 @default.
- W4309662531 hasConceptScore W4309662531C3018868096 @default.
- W4309662531 hasConceptScore W4309662531C33923547 @default.
- W4309662531 hasConceptScore W4309662531C36503486 @default.
- W4309662531 hasConceptScore W4309662531C41008148 @default.
- W4309662531 hasConceptScore W4309662531C62520636 @default.
- W4309662531 hasConceptScore W4309662531C71924100 @default.
- W4309662531 hasIssue "6" @default.
- W4309662531 hasLocation W43096625311 @default.
- W4309662531 hasLocation W43096625312 @default.
- W4309662531 hasOpenAccess W4309662531 @default.
- W4309662531 hasPrimaryLocation W43096625311 @default.
- W4309662531 hasRelatedWork W10312456 @default.
- W4309662531 hasRelatedWork W1516195074 @default.
- W4309662531 hasRelatedWork W1982572960 @default.
- W4309662531 hasRelatedWork W2101501418 @default.