Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310235714> ?p ?o ?g. }
- W4310235714 endingPage "12080" @default.
- W4310235714 startingPage "12080" @default.
- W4310235714 abstract "Heart disease is one of the lethal diseases causing millions of fatalities every year. The Internet of Medical Things (IoMT) based healthcare effectively enables a reduction in death rate by early diagnosis and detection of disease. The biomedical data collected using IoMT contains personalized information about the patient and this data has serious privacy concerns. To overcome data privacy issues, several data protection laws are proposed internationally. These privacy laws created a huge problem for techniques used in traditional machine learning. We propose a framework based on federated matched averaging with a modified Artificial Bee Colony (M-ABC) optimization algorithm to overcome privacy issues and to improve the diagnosis method for the prediction of heart disease in this paper. The proposed technique improves the prediction accuracy, classification error, and communication efficiency as compared to the state-of-the-art federated learning algorithms on the real-world heart disease dataset." @default.
- W4310235714 created "2022-11-30" @default.
- W4310235714 creator A5006962159 @default.
- W4310235714 creator A5017809749 @default.
- W4310235714 creator A5033021997 @default.
- W4310235714 creator A5049586476 @default.
- W4310235714 creator A5049950578 @default.
- W4310235714 creator A5076083494 @default.
- W4310235714 creator A5078317952 @default.
- W4310235714 date "2022-11-25" @default.
- W4310235714 modified "2023-10-01" @default.
- W4310235714 title "Modified Artificial Bee Colony Based Feature Optimized Federated Learning for Heart Disease Diagnosis in Healthcare" @default.
- W4310235714 cites W1999077811 @default.
- W4310235714 cites W2744999500 @default.
- W4310235714 cites W2751049114 @default.
- W4310235714 cites W2783522756 @default.
- W4310235714 cites W2890515546 @default.
- W4310235714 cites W2900594532 @default.
- W4310235714 cites W2905286376 @default.
- W4310235714 cites W2914250519 @default.
- W4310235714 cites W2914805061 @default.
- W4310235714 cites W2919979744 @default.
- W4310235714 cites W2924178503 @default.
- W4310235714 cites W2949767632 @default.
- W4310235714 cites W2951635356 @default.
- W4310235714 cites W2957682442 @default.
- W4310235714 cites W2982241997 @default.
- W4310235714 cites W2995573806 @default.
- W4310235714 cites W3007212997 @default.
- W4310235714 cites W3010666772 @default.
- W4310235714 cites W3014974411 @default.
- W4310235714 cites W3035142875 @default.
- W4310235714 cites W3039358234 @default.
- W4310235714 cites W3040351441 @default.
- W4310235714 cites W3041726771 @default.
- W4310235714 cites W3046653923 @default.
- W4310235714 cites W3087059428 @default.
- W4310235714 cites W3111352918 @default.
- W4310235714 cites W3113075536 @default.
- W4310235714 cites W3120779539 @default.
- W4310235714 cites W3131309882 @default.
- W4310235714 cites W3134651880 @default.
- W4310235714 cites W3135231128 @default.
- W4310235714 cites W3146925889 @default.
- W4310235714 cites W3153674394 @default.
- W4310235714 cites W3154719286 @default.
- W4310235714 cites W3158217662 @default.
- W4310235714 cites W3170020805 @default.
- W4310235714 cites W3184824817 @default.
- W4310235714 cites W3195070922 @default.
- W4310235714 cites W3208561576 @default.
- W4310235714 cites W341879454 @default.
- W4310235714 cites W4205877845 @default.
- W4310235714 cites W4206542300 @default.
- W4310235714 cites W4206573673 @default.
- W4310235714 cites W4220654399 @default.
- W4310235714 cites W4220845239 @default.
- W4310235714 doi "https://doi.org/10.3390/app122312080" @default.
- W4310235714 hasPublicationYear "2022" @default.
- W4310235714 type Work @default.
- W4310235714 citedByCount "8" @default.
- W4310235714 countsByYear W43102357142023 @default.
- W4310235714 crossrefType "journal-article" @default.
- W4310235714 hasAuthorship W4310235714A5006962159 @default.
- W4310235714 hasAuthorship W4310235714A5017809749 @default.
- W4310235714 hasAuthorship W4310235714A5033021997 @default.
- W4310235714 hasAuthorship W4310235714A5049586476 @default.
- W4310235714 hasAuthorship W4310235714A5049950578 @default.
- W4310235714 hasAuthorship W4310235714A5076083494 @default.
- W4310235714 hasAuthorship W4310235714A5078317952 @default.
- W4310235714 hasBestOaLocation W43102357141 @default.
- W4310235714 hasConcept C110875604 @default.
- W4310235714 hasConcept C119857082 @default.
- W4310235714 hasConcept C124101348 @default.
- W4310235714 hasConcept C136764020 @default.
- W4310235714 hasConcept C154945302 @default.
- W4310235714 hasConcept C160735492 @default.
- W4310235714 hasConcept C162324750 @default.
- W4310235714 hasConcept C164705383 @default.
- W4310235714 hasConcept C2780074459 @default.
- W4310235714 hasConcept C2992525071 @default.
- W4310235714 hasConcept C41008148 @default.
- W4310235714 hasConcept C50522688 @default.
- W4310235714 hasConcept C71924100 @default.
- W4310235714 hasConcept C97133563 @default.
- W4310235714 hasConceptScore W4310235714C110875604 @default.
- W4310235714 hasConceptScore W4310235714C119857082 @default.
- W4310235714 hasConceptScore W4310235714C124101348 @default.
- W4310235714 hasConceptScore W4310235714C136764020 @default.
- W4310235714 hasConceptScore W4310235714C154945302 @default.
- W4310235714 hasConceptScore W4310235714C160735492 @default.
- W4310235714 hasConceptScore W4310235714C162324750 @default.
- W4310235714 hasConceptScore W4310235714C164705383 @default.
- W4310235714 hasConceptScore W4310235714C2780074459 @default.
- W4310235714 hasConceptScore W4310235714C2992525071 @default.
- W4310235714 hasConceptScore W4310235714C41008148 @default.
- W4310235714 hasConceptScore W4310235714C50522688 @default.
- W4310235714 hasConceptScore W4310235714C71924100 @default.