Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311492955> ?p ?o ?g. }
- W4311492955 endingPage "6309" @default.
- W4311492955 startingPage "6289" @default.
- W4311492955 abstract "Abstract. The Budyko framework puts the long-term mean annual evapotranspiration (ET) of a catchment in relation to its maximum possible value determined by the conservation of mass (ET cannot exceed mean annual precipitation) and energy (ET can not exceed mean annual net radiation) in the absence of significant storage contributions. Most catchments plot relatively close to this physical limit, which allowed the development of an empirical equation (often referred to as the Budyko curve) for estimating mean annual evaporation and runoff from observed net radiation and precipitation. Parametric forms of the curve often use a shape parameter, n, that is seen as a catchment characteristic. However, a satisfying explanation for the convergence and self-organization of catchments around such an empirical curve is still lacking. In this study, we explore if vegetation optimality can explain the convergence of catchments along a Budyko curve and in how far can n be seen as a catchment characteristic. The Vegetation Optimality Model (VOM) optimizes vegetation properties and behavior (e.g., rooting depths, vegetation cover, stomatal control) to maximize the difference between the total carbon taken up from the atmosphere and the carbon used for maintenance of plant tissues involved in its uptake, i.e., the long-term net carbon profit (NCP). This optimization is entirely independent of observed ET and hence the VOM does not require calibration for predicting ET. In a first step, the VOM was fully optimized for the observed atmospheric forcing at five flux tower sites along the North Australian Tropical Transect, as well as 36 additional locations near the transect and six Australian catchments. In addition, the VOM was run without vegetation for all sites, meaning that all precipitation was partitioned into soil evaporation and runoff. For comparison, three conceptual hydrological models (TUWmodel, GR4J, and FLEX) were calibrated for the Australian catchments using the observed precipitation and runoff. Subsequently, we emulated step changes in climate by multiplying precipitation (P) by factors ranging between 0.2 and 2 before running the VOM and hydrological models without changing the vegetation properties or model parameters, emulating invariant catchment characteristics under a changed climate. In a last step, the VOM was re-optimized for the different P amounts, allowing vegetation to adapt to the new situation. Eventually, Budyko curves were fit by adapting the parameter n to the model results. This was carried out for both multiple sites simultaneously and for each individual study site, thereby assuming that n is a site-specific characteristic. The optimized VOM runs tracked relatively close to a Budyko curve with a realistic n value and close to observations, whereas the runs without vegetation led to significantly lower evaporative fractions and unrealistically low n values compared with literature. When fitting n to individual catchments, changes in P led to changes in n (increasing n for decreasing P) in all model runs (including the three conceptual models) except if the VOM was re-optimized for each change in P, which brought the value of n back close to its value for the unperturbed P in each catchment. For the re-optimized VOM runs, the variation in n between catchments was greater than within each catchment in response to multiplications of P with a factor 0.2 to 2. These findings suggest that optimality may explain the self-organization of catchments in Budyko space, and that the accompanying parameter n does not remain constant for constant catchment and vegetation conditions as hypothesized in the literature, but in fact emerges through the adaptation of vegetation to climatic conditions in a given hydrological setting. Moreover, the results suggest that n might initially increase in response to suddenly reduced P, and only slowly returns to its original, catchment-specific value, as vegetation re-adjusts to the new climate over decades and centuries. This may constitute a new basis for the evaluation and prediction of catchment responses to climatic shifts." @default.
- W4311492955 created "2022-12-26" @default.
- W4311492955 creator A5002261789 @default.
- W4311492955 creator A5053089363 @default.
- W4311492955 date "2022-12-14" @default.
- W4311492955 modified "2023-09-30" @default.
- W4311492955 title "Vegetation optimality explains the convergence of catchments on the Budyko curve" @default.
- W4311492955 cites W1527494941 @default.
- W4311492955 cites W1528793132 @default.
- W4311492955 cites W1564464817 @default.
- W4311492955 cites W1588976221 @default.
- W4311492955 cites W1593594010 @default.
- W4311492955 cites W1649711606 @default.
- W4311492955 cites W1675270945 @default.
- W4311492955 cites W1845868556 @default.
- W4311492955 cites W1902106814 @default.
- W4311492955 cites W1949692868 @default.
- W4311492955 cites W1973104872 @default.
- W4311492955 cites W1976095361 @default.
- W4311492955 cites W1981857937 @default.
- W4311492955 cites W1991998586 @default.
- W4311492955 cites W1997191880 @default.
- W4311492955 cites W2001317094 @default.
- W4311492955 cites W2003814557 @default.
- W4311492955 cites W2009673657 @default.
- W4311492955 cites W2010624461 @default.
- W4311492955 cites W2027921754 @default.
- W4311492955 cites W2044054848 @default.
- W4311492955 cites W2056564645 @default.
- W4311492955 cites W2069268000 @default.
- W4311492955 cites W2089914147 @default.
- W4311492955 cites W2092439597 @default.
- W4311492955 cites W2093275097 @default.
- W4311492955 cites W2107212943 @default.
- W4311492955 cites W2113010650 @default.
- W4311492955 cites W2113389258 @default.
- W4311492955 cites W2122315938 @default.
- W4311492955 cites W2124310429 @default.
- W4311492955 cites W2126659049 @default.
- W4311492955 cites W2126800465 @default.
- W4311492955 cites W2128817501 @default.
- W4311492955 cites W2130373714 @default.
- W4311492955 cites W2137337950 @default.
- W4311492955 cites W2137961132 @default.
- W4311492955 cites W2138763184 @default.
- W4311492955 cites W2148888430 @default.
- W4311492955 cites W2149548121 @default.
- W4311492955 cites W2150252016 @default.
- W4311492955 cites W2151036430 @default.
- W4311492955 cites W2154931588 @default.
- W4311492955 cites W2158047661 @default.
- W4311492955 cites W2166550920 @default.
- W4311492955 cites W2175175161 @default.
- W4311492955 cites W2225718647 @default.
- W4311492955 cites W2233510150 @default.
- W4311492955 cites W2254548579 @default.
- W4311492955 cites W2256578114 @default.
- W4311492955 cites W2533038838 @default.
- W4311492955 cites W2603766970 @default.
- W4311492955 cites W2621865774 @default.
- W4311492955 cites W2893845341 @default.
- W4311492955 cites W2894804593 @default.
- W4311492955 cites W3176380594 @default.
- W4311492955 cites W3217368013 @default.
- W4311492955 cites W4210672355 @default.
- W4311492955 cites W4220738613 @default.
- W4311492955 cites W4226303901 @default.
- W4311492955 cites W4297899678 @default.
- W4311492955 doi "https://doi.org/10.5194/hess-26-6289-2022" @default.
- W4311492955 hasPublicationYear "2022" @default.
- W4311492955 type Work @default.
- W4311492955 citedByCount "2" @default.
- W4311492955 countsByYear W43114929552023 @default.
- W4311492955 crossrefType "journal-article" @default.
- W4311492955 hasAuthorship W4311492955A5002261789 @default.
- W4311492955 hasAuthorship W4311492955A5053089363 @default.
- W4311492955 hasBestOaLocation W43114929551 @default.
- W4311492955 hasConcept C126645576 @default.
- W4311492955 hasConcept C127313418 @default.
- W4311492955 hasConcept C142724271 @default.
- W4311492955 hasConcept C176783924 @default.
- W4311492955 hasConcept C187320778 @default.
- W4311492955 hasConcept C18903297 @default.
- W4311492955 hasConcept C205649164 @default.
- W4311492955 hasConcept C2776133958 @default.
- W4311492955 hasConcept C39432304 @default.
- W4311492955 hasConcept C58640448 @default.
- W4311492955 hasConcept C71924100 @default.
- W4311492955 hasConcept C76886044 @default.
- W4311492955 hasConcept C86803240 @default.
- W4311492955 hasConcept C91586092 @default.
- W4311492955 hasConceptScore W4311492955C126645576 @default.
- W4311492955 hasConceptScore W4311492955C127313418 @default.
- W4311492955 hasConceptScore W4311492955C142724271 @default.
- W4311492955 hasConceptScore W4311492955C176783924 @default.
- W4311492955 hasConceptScore W4311492955C187320778 @default.
- W4311492955 hasConceptScore W4311492955C18903297 @default.
- W4311492955 hasConceptScore W4311492955C205649164 @default.