Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311809802> ?p ?o ?g. }
- W4311809802 endingPage "8279" @default.
- W4311809802 startingPage "8259" @default.
- W4311809802 abstract "Pneumonia is an acute respiratory infection caused by bacteria, viruses, or fungi and has become very common in children ranging from 1 to 5 years of age. Common symptoms of pneumonia include difficulty breathing due to inflamed or pus and fluid-filled alveoli. The United Nations Children's Fund reports nearly 800,000 deaths in children due to pneumonia. Delayed diagnosis and overpriced tests are the prime reason for the high mortality rate, especially in underdeveloped countries. A time and cost-efficient diagnosis tool: Chest X-rays, was thus accepted as the standard diagnostic test for pediatric pneumonia. However, the lower radiation levels for diagnosis in children make the task much more onerous and time-consuming. The mentioned challenges initiate the need for a computer-aided detection model that is instantaneous and accurate. Our work proposes a stacked ensemble learning of deep learning-based features for pediatric pneumonia classification. The extracted features from the global average pooling layer of the fine-tuned Xception model pretrained on ImageNet weights are sent to the Kernel Principal Component Analysis for dimensionality reduction. The dimensionally reduced features are further trained and validated on the stacking classifier. The stacking classifier consists of two stages; the first stage uses the Random-Forest classifier, K-Nearest Neighbors, Logistic Regression, XGB classifier, Support Vector Classifier (SVC), Nu-SVC, and MLP classifier. The second stage operates on Logistic Regression using the first stage predictions for the final classification with Stratified K-fold cross-validation to prevent overfitting. The model was tested on the publicly available pediatric pneumonia dataset, achieving an accuracy of 98.3%, precision of 99.29%, recall of 98.36%, F1-score of 98.83%, and an AUC score of 98.24%. The performance shows its reliability for real-time deployment in assisting radiologists and physicians." @default.
- W4311809802 created "2022-12-28" @default.
- W4311809802 creator A5000182583 @default.
- W4311809802 creator A5006204845 @default.
- W4311809802 creator A5040100735 @default.
- W4311809802 creator A5077735609 @default.
- W4311809802 date "2022-12-07" @default.
- W4311809802 modified "2023-10-18" @default.
- W4311809802 title "Stacked ensemble learning based on deep convolutional neural networks for pediatric pneumonia diagnosis using chest X-ray images" @default.
- W4311809802 cites W2030345823 @default.
- W4311809802 cites W2130082585 @default.
- W4311809802 cites W2165698076 @default.
- W4311809802 cites W2183341477 @default.
- W4311809802 cites W2194775991 @default.
- W4311809802 cites W2295107390 @default.
- W4311809802 cites W2295124130 @default.
- W4311809802 cites W2302255633 @default.
- W4311809802 cites W2531409750 @default.
- W4311809802 cites W2750023899 @default.
- W4311809802 cites W2788633781 @default.
- W4311809802 cites W2806137325 @default.
- W4311809802 cites W2891756914 @default.
- W4311809802 cites W2920831020 @default.
- W4311809802 cites W2921073497 @default.
- W4311809802 cites W2924911266 @default.
- W4311809802 cites W2952405950 @default.
- W4311809802 cites W2956123709 @default.
- W4311809802 cites W2963446712 @default.
- W4311809802 cites W2964350391 @default.
- W4311809802 cites W2966948188 @default.
- W4311809802 cites W2982083293 @default.
- W4311809802 cites W2984802304 @default.
- W4311809802 cites W2998957378 @default.
- W4311809802 cites W3004921770 @default.
- W4311809802 cites W3006630357 @default.
- W4311809802 cites W3011170136 @default.
- W4311809802 cites W3011981424 @default.
- W4311809802 cites W3013277995 @default.
- W4311809802 cites W3014206051 @default.
- W4311809802 cites W3017309755 @default.
- W4311809802 cites W3018007233 @default.
- W4311809802 cites W3027616527 @default.
- W4311809802 cites W3035815256 @default.
- W4311809802 cites W3036881855 @default.
- W4311809802 cites W3036942245 @default.
- W4311809802 cites W3089672352 @default.
- W4311809802 cites W3094344483 @default.
- W4311809802 cites W3094433718 @default.
- W4311809802 cites W3097174181 @default.
- W4311809802 cites W3099299447 @default.
- W4311809802 cites W3135057764 @default.
- W4311809802 cites W3163804985 @default.
- W4311809802 cites W3181011402 @default.
- W4311809802 cites W3184320593 @default.
- W4311809802 cites W3187702056 @default.
- W4311809802 cites W3194687576 @default.
- W4311809802 cites W4245536867 @default.
- W4311809802 doi "https://doi.org/10.1007/s00521-022-08099-z" @default.
- W4311809802 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36532883" @default.
- W4311809802 hasPublicationYear "2022" @default.
- W4311809802 type Work @default.
- W4311809802 citedByCount "4" @default.
- W4311809802 countsByYear W43118098022023 @default.
- W4311809802 crossrefType "journal-article" @default.
- W4311809802 hasAuthorship W4311809802A5000182583 @default.
- W4311809802 hasAuthorship W4311809802A5006204845 @default.
- W4311809802 hasAuthorship W4311809802A5040100735 @default.
- W4311809802 hasAuthorship W4311809802A5077735609 @default.
- W4311809802 hasBestOaLocation W43118098021 @default.
- W4311809802 hasConcept C108583219 @default.
- W4311809802 hasConcept C119857082 @default.
- W4311809802 hasConcept C12267149 @default.
- W4311809802 hasConcept C126322002 @default.
- W4311809802 hasConcept C151956035 @default.
- W4311809802 hasConcept C153180895 @default.
- W4311809802 hasConcept C154945302 @default.
- W4311809802 hasConcept C169258074 @default.
- W4311809802 hasConcept C188441871 @default.
- W4311809802 hasConcept C22019652 @default.
- W4311809802 hasConcept C2777914695 @default.
- W4311809802 hasConcept C41008148 @default.
- W4311809802 hasConcept C50644808 @default.
- W4311809802 hasConcept C71924100 @default.
- W4311809802 hasConcept C81363708 @default.
- W4311809802 hasConcept C95623464 @default.
- W4311809802 hasConceptScore W4311809802C108583219 @default.
- W4311809802 hasConceptScore W4311809802C119857082 @default.
- W4311809802 hasConceptScore W4311809802C12267149 @default.
- W4311809802 hasConceptScore W4311809802C126322002 @default.
- W4311809802 hasConceptScore W4311809802C151956035 @default.
- W4311809802 hasConceptScore W4311809802C153180895 @default.
- W4311809802 hasConceptScore W4311809802C154945302 @default.
- W4311809802 hasConceptScore W4311809802C169258074 @default.
- W4311809802 hasConceptScore W4311809802C188441871 @default.
- W4311809802 hasConceptScore W4311809802C22019652 @default.
- W4311809802 hasConceptScore W4311809802C2777914695 @default.
- W4311809802 hasConceptScore W4311809802C41008148 @default.
- W4311809802 hasConceptScore W4311809802C50644808 @default.