Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312889780> ?p ?o ?g. }
- W4312889780 endingPage "121464" @default.
- W4312889780 startingPage "121444" @default.
- W4312889780 abstract "Deep Learning based Intrusion Detection Systems (IDSs) have received significant attention from the research community for their capability to handle modern-day security systems in large-scale networks. Despite their considerable improvement in performance over machine learning-based techniques and conventional statistical models, deep neural networks (DNN) suffer from catastrophic forgetting: the model forgets previously learned information when trained on newer data points. This vulnerability is specifically exaggerated in large scale systems due to the frequent changes in network architecture and behaviours, which leads to changes in data distribution and the introduction of zero-day attacks; this phenomenon is termed as covariate shift. Due to these constant changes in the data distribution, the DNN models will not be able to consistently perform at high accuracy and low false positive rate (FPR) rates without regular updates. However, before we update the DNN models, it is essential to understand the magnitude and nature of the drift in the data distribution. In this paper, to analyze the drift in data distribution, we propose an eight-stage statistics and machine learning guided implementation framework that objectively studies and quantifies the changes. Further, to handle the changes in data distribution, most IDS solutions collect the network packets and store them to retrain the DNN models periodically, but when the network’s size and complexity increase, those tasks become expensive. To efficiently solve this problem, we explore the potential of continual learning models to incrementally learn new data patterns while also retaining their previous knowledge. We perform an experimental and analytical study of advanced intrusion detection systems using three major continual learning approaches: learning without forgetting, experience replay, and dark experience replay on the NSL-KDD and the CICIDS 2017 dataset. Through extensive experimentation, we show that our continual learning models achieve improved accuracy and lower FPR rates when compared to the state-of-the-art works while also being able to incrementally learn newer data patterns. Finally, we highlight the drawbacks of traditional statistical and non-gradient based machine learning approaches in handling the covariate shift problem." @default.
- W4312889780 created "2023-01-05" @default.
- W4312889780 creator A5000496087 @default.
- W4312889780 creator A5026959916 @default.
- W4312889780 creator A5057919668 @default.
- W4312889780 creator A5071220202 @default.
- W4312889780 creator A5090328172 @default.
- W4312889780 date "2022-01-01" @default.
- W4312889780 modified "2023-10-09" @default.
- W4312889780 title "Analysis of Continual Learning Models for Intrusion Detection System" @default.
- W4312889780 cites W1972783868 @default.
- W4312889780 cites W2060277733 @default.
- W4312889780 cites W2077508905 @default.
- W4312889780 cites W2143386621 @default.
- W4312889780 cites W2426032775 @default.
- W4312889780 cites W2473930607 @default.
- W4312889780 cites W2560647685 @default.
- W4312889780 cites W2734718015 @default.
- W4312889780 cites W2736800466 @default.
- W4312889780 cites W2787166691 @default.
- W4312889780 cites W2789828921 @default.
- W4312889780 cites W2794951181 @default.
- W4312889780 cites W2909444216 @default.
- W4312889780 cites W2936845163 @default.
- W4312889780 cites W2964189064 @default.
- W4312889780 cites W2986887468 @default.
- W4312889780 cites W2991722918 @default.
- W4312889780 cites W3006165800 @default.
- W4312889780 cites W3006761813 @default.
- W4312889780 cites W3011807858 @default.
- W4312889780 cites W3014732532 @default.
- W4312889780 cites W3015108593 @default.
- W4312889780 cites W3035510612 @default.
- W4312889780 cites W3037824821 @default.
- W4312889780 cites W3043569052 @default.
- W4312889780 cites W3047132966 @default.
- W4312889780 cites W3080177360 @default.
- W4312889780 cites W3092565864 @default.
- W4312889780 cites W3092688604 @default.
- W4312889780 cites W3115025749 @default.
- W4312889780 cites W3158456479 @default.
- W4312889780 cites W3190742248 @default.
- W4312889780 cites W3199237131 @default.
- W4312889780 cites W3211144245 @default.
- W4312889780 cites W4220985823 @default.
- W4312889780 doi "https://doi.org/10.1109/access.2022.3222715" @default.
- W4312889780 hasPublicationYear "2022" @default.
- W4312889780 type Work @default.
- W4312889780 citedByCount "5" @default.
- W4312889780 countsByYear W43128897802023 @default.
- W4312889780 crossrefType "journal-article" @default.
- W4312889780 hasAuthorship W4312889780A5000496087 @default.
- W4312889780 hasAuthorship W4312889780A5026959916 @default.
- W4312889780 hasAuthorship W4312889780A5057919668 @default.
- W4312889780 hasAuthorship W4312889780A5071220202 @default.
- W4312889780 hasAuthorship W4312889780A5090328172 @default.
- W4312889780 hasBestOaLocation W43128897801 @default.
- W4312889780 hasConcept C108583219 @default.
- W4312889780 hasConcept C119857082 @default.
- W4312889780 hasConcept C121332964 @default.
- W4312889780 hasConcept C124101348 @default.
- W4312889780 hasConcept C138885662 @default.
- W4312889780 hasConcept C154945302 @default.
- W4312889780 hasConcept C158379750 @default.
- W4312889780 hasConcept C2778755073 @default.
- W4312889780 hasConcept C31258907 @default.
- W4312889780 hasConcept C35525427 @default.
- W4312889780 hasConcept C38652104 @default.
- W4312889780 hasConcept C41008148 @default.
- W4312889780 hasConcept C41895202 @default.
- W4312889780 hasConcept C50644808 @default.
- W4312889780 hasConcept C62520636 @default.
- W4312889780 hasConcept C7149132 @default.
- W4312889780 hasConcept C95713431 @default.
- W4312889780 hasConceptScore W4312889780C108583219 @default.
- W4312889780 hasConceptScore W4312889780C119857082 @default.
- W4312889780 hasConceptScore W4312889780C121332964 @default.
- W4312889780 hasConceptScore W4312889780C124101348 @default.
- W4312889780 hasConceptScore W4312889780C138885662 @default.
- W4312889780 hasConceptScore W4312889780C154945302 @default.
- W4312889780 hasConceptScore W4312889780C158379750 @default.
- W4312889780 hasConceptScore W4312889780C2778755073 @default.
- W4312889780 hasConceptScore W4312889780C31258907 @default.
- W4312889780 hasConceptScore W4312889780C35525427 @default.
- W4312889780 hasConceptScore W4312889780C38652104 @default.
- W4312889780 hasConceptScore W4312889780C41008148 @default.
- W4312889780 hasConceptScore W4312889780C41895202 @default.
- W4312889780 hasConceptScore W4312889780C50644808 @default.
- W4312889780 hasConceptScore W4312889780C62520636 @default.
- W4312889780 hasConceptScore W4312889780C7149132 @default.
- W4312889780 hasConceptScore W4312889780C95713431 @default.
- W4312889780 hasFunder F4320336713 @default.
- W4312889780 hasLocation W43128897801 @default.
- W4312889780 hasLocation W43128897802 @default.
- W4312889780 hasOpenAccess W4312889780 @default.
- W4312889780 hasPrimaryLocation W43128897801 @default.
- W4312889780 hasRelatedWork W2795261237 @default.
- W4312889780 hasRelatedWork W3014300295 @default.