Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313156995> ?p ?o ?g. }
- W4313156995 endingPage "1076" @default.
- W4313156995 startingPage "1064" @default.
- W4313156995 abstract "In this paper, artificial intelligence tools are implemented in order to predict trajectory positions, as well as channel performance of an optical wireless communications link. Case studies for industrial scenarios are considered to this aim. In a first stage, system parameters are optimized using a hybrid multi-objective optimization (HMO) procedure based on the grey wolf optimizer and the non-sorting genetic algorithm III with the goal of simultaneously maximizing power and spectral efficiency. In a second stage, we demonstrate that a long short-term memory neural network (LSTM) is able to predict positions, as well as channel gain. In this way, the VLC links can be configured with the optimal parameters provided by the HMO. The success of the proposed LSTM architectures was validated by training and test root-mean square error evaluations below 1%." @default.
- W4313156995 created "2023-01-06" @default.
- W4313156995 creator A5003598381 @default.
- W4313156995 creator A5019707976 @default.
- W4313156995 creator A5027930672 @default.
- W4313156995 creator A5028470700 @default.
- W4313156995 creator A5046753401 @default.
- W4313156995 creator A5053776864 @default.
- W4313156995 creator A5054929239 @default.
- W4313156995 creator A5075821999 @default.
- W4313156995 creator A5083921350 @default.
- W4313156995 creator A5088227569 @default.
- W4313156995 date "2023-02-15" @default.
- W4313156995 modified "2023-10-16" @default.
- W4313156995 title "Toward AI-Enhanced VLC Systems for Industrial Applications" @default.
- W4313156995 cites W1934411289 @default.
- W4313156995 cites W1974019172 @default.
- W4313156995 cites W2003335755 @default.
- W4313156995 cites W2022485595 @default.
- W4313156995 cites W2052480004 @default.
- W4313156995 cites W2085507535 @default.
- W4313156995 cites W2105580634 @default.
- W4313156995 cites W2115253372 @default.
- W4313156995 cites W2126105956 @default.
- W4313156995 cites W2133401839 @default.
- W4313156995 cites W2144644352 @default.
- W4313156995 cites W2148324342 @default.
- W4313156995 cites W2166826179 @default.
- W4313156995 cites W2167315905 @default.
- W4313156995 cites W2174096823 @default.
- W4313156995 cites W2883572891 @default.
- W4313156995 cites W2896827527 @default.
- W4313156995 cites W2898741628 @default.
- W4313156995 cites W2914219756 @default.
- W4313156995 cites W2964249268 @default.
- W4313156995 cites W2978631110 @default.
- W4313156995 cites W2997218538 @default.
- W4313156995 cites W2999573242 @default.
- W4313156995 cites W3010218374 @default.
- W4313156995 cites W3040145264 @default.
- W4313156995 cites W3044158152 @default.
- W4313156995 cites W3101674493 @default.
- W4313156995 cites W3119358936 @default.
- W4313156995 cites W3126351335 @default.
- W4313156995 cites W3129170541 @default.
- W4313156995 cites W3133008427 @default.
- W4313156995 cites W3153123266 @default.
- W4313156995 cites W3181619495 @default.
- W4313156995 cites W3191877054 @default.
- W4313156995 cites W4200160319 @default.
- W4313156995 cites W4200215753 @default.
- W4313156995 cites W4225695766 @default.
- W4313156995 cites W4298898028 @default.
- W4313156995 doi "https://doi.org/10.1109/jlt.2022.3231791" @default.
- W4313156995 hasPublicationYear "2023" @default.
- W4313156995 type Work @default.
- W4313156995 citedByCount "1" @default.
- W4313156995 countsByYear W43131569952023 @default.
- W4313156995 crossrefType "journal-article" @default.
- W4313156995 hasAuthorship W4313156995A5003598381 @default.
- W4313156995 hasAuthorship W4313156995A5019707976 @default.
- W4313156995 hasAuthorship W4313156995A5027930672 @default.
- W4313156995 hasAuthorship W4313156995A5028470700 @default.
- W4313156995 hasAuthorship W4313156995A5046753401 @default.
- W4313156995 hasAuthorship W4313156995A5053776864 @default.
- W4313156995 hasAuthorship W4313156995A5054929239 @default.
- W4313156995 hasAuthorship W4313156995A5075821999 @default.
- W4313156995 hasAuthorship W4313156995A5083921350 @default.
- W4313156995 hasAuthorship W4313156995A5088227569 @default.
- W4313156995 hasConcept C105795698 @default.
- W4313156995 hasConcept C111696304 @default.
- W4313156995 hasConcept C11413529 @default.
- W4313156995 hasConcept C119599485 @default.
- W4313156995 hasConcept C119857082 @default.
- W4313156995 hasConcept C127162648 @default.
- W4313156995 hasConcept C127413603 @default.
- W4313156995 hasConcept C139945424 @default.
- W4313156995 hasConcept C154945302 @default.
- W4313156995 hasConcept C160487672 @default.
- W4313156995 hasConcept C176666156 @default.
- W4313156995 hasConcept C33923547 @default.
- W4313156995 hasConcept C41008148 @default.
- W4313156995 hasConcept C50644808 @default.
- W4313156995 hasConcept C555944384 @default.
- W4313156995 hasConcept C56296756 @default.
- W4313156995 hasConcept C76155785 @default.
- W4313156995 hasConcept C8880873 @default.
- W4313156995 hasConceptScore W4313156995C105795698 @default.
- W4313156995 hasConceptScore W4313156995C111696304 @default.
- W4313156995 hasConceptScore W4313156995C11413529 @default.
- W4313156995 hasConceptScore W4313156995C119599485 @default.
- W4313156995 hasConceptScore W4313156995C119857082 @default.
- W4313156995 hasConceptScore W4313156995C127162648 @default.
- W4313156995 hasConceptScore W4313156995C127413603 @default.
- W4313156995 hasConceptScore W4313156995C139945424 @default.
- W4313156995 hasConceptScore W4313156995C154945302 @default.
- W4313156995 hasConceptScore W4313156995C160487672 @default.
- W4313156995 hasConceptScore W4313156995C176666156 @default.