Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313245257> ?p ?o ?g. }
- W4313245257 endingPage "25" @default.
- W4313245257 startingPage "25" @default.
- W4313245257 abstract "The eye is generally considered to be the most important sensory organ of humans. Diseases and other degenerative conditions of the eye are therefore of great concern as they affect the function of this vital organ. With proper early diagnosis by experts and with optimal use of medicines and surgical techniques, these diseases or conditions can in many cases be either cured or greatly mitigated. Experts that perform the diagnosis are in high demand and their services are expensive, hence the appropriate identification of the cause of vision problems is either postponed or not done at all such that corrective measures are either not done or done too late. An efficient model to predict eye diseases using machine learning (ML) and ranker-based feature selection (r-FS) methods is therefore proposed which will aid in obtaining a correct diagnosis. The aim of this model is to automatically predict one or more of five common eye diseases namely, Cataracts (CT), Acute Angle-Closure Glaucoma (AACG), Primary Congenital Glaucoma (PCG), Exophthalmos or Bulging Eyes (BE) and Ocular Hypertension (OH). We have used efficient data collection methods, data annotations by professional ophthalmologists, applied five different feature selection methods, two types of data splitting techniques (train-test and stratified k-fold cross validation), and applied nine ML methods for the overall prediction approach. While applying ML methods, we have chosen suitable classic ML methods, such as Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), AdaBoost (AB), Logistic Regression (LR), k-Nearest Neighbour (k-NN), Bagging (Bg), Boosting (BS) and Support Vector Machine (SVM). We have performed a symptomatic analysis of the prominent symptoms of each of the five eye diseases. The results of the analysis and comparison between methods are shown separately. While comparing the methods, we have adopted traditional performance indices, such as accuracy, precision, sensitivity, F1-Score, etc. Finally, SVM outperformed other models obtaining the highest accuracy of 99.11% for 10-fold cross-validation and LR obtained 98.58% for the split ratio of 80:20." @default.
- W4313245257 created "2023-01-06" @default.
- W4313245257 creator A5020310155 @default.
- W4313245257 creator A5029286033 @default.
- W4313245257 creator A5033188506 @default.
- W4313245257 creator A5050712574 @default.
- W4313245257 creator A5066265052 @default.
- W4313245257 date "2022-12-24" @default.
- W4313245257 modified "2023-10-01" @default.
- W4313245257 title "An Efficient Approach to Predict Eye Diseases from Symptoms Using Machine Learning and Ranker-Based Feature Selection Methods" @default.
- W4313245257 cites W1604671759 @default.
- W4313245257 cites W1873574768 @default.
- W4313245257 cites W2002544312 @default.
- W4313245257 cites W2010043809 @default.
- W4313245257 cites W2017717819 @default.
- W4313245257 cites W2031648200 @default.
- W4313245257 cites W2034822650 @default.
- W4313245257 cites W2125595978 @default.
- W4313245257 cites W2128728535 @default.
- W4313245257 cites W2294798173 @default.
- W4313245257 cites W2336171935 @default.
- W4313245257 cites W2409155905 @default.
- W4313245257 cites W2520665124 @default.
- W4313245257 cites W2604160770 @default.
- W4313245257 cites W2606436201 @default.
- W4313245257 cites W2923770496 @default.
- W4313245257 cites W2944848758 @default.
- W4313245257 cites W2953914369 @default.
- W4313245257 cites W2988032299 @default.
- W4313245257 cites W2995922120 @default.
- W4313245257 cites W3006988731 @default.
- W4313245257 cites W3119612757 @default.
- W4313245257 cites W3121216533 @default.
- W4313245257 cites W3136310587 @default.
- W4313245257 cites W3168877121 @default.
- W4313245257 cites W3189955102 @default.
- W4313245257 cites W3195179567 @default.
- W4313245257 cites W3197737570 @default.
- W4313245257 cites W3201230992 @default.
- W4313245257 cites W4211229175 @default.
- W4313245257 cites W4250664506 @default.
- W4313245257 cites W4256049924 @default.
- W4313245257 cites W4282978729 @default.
- W4313245257 cites W4283743250 @default.
- W4313245257 doi "https://doi.org/10.3390/bioengineering10010025" @default.
- W4313245257 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36671598" @default.
- W4313245257 hasPublicationYear "2022" @default.
- W4313245257 type Work @default.
- W4313245257 citedByCount "4" @default.
- W4313245257 countsByYear W43132452572023 @default.
- W4313245257 crossrefType "journal-article" @default.
- W4313245257 hasAuthorship W4313245257A5020310155 @default.
- W4313245257 hasAuthorship W4313245257A5029286033 @default.
- W4313245257 hasAuthorship W4313245257A5033188506 @default.
- W4313245257 hasAuthorship W4313245257A5050712574 @default.
- W4313245257 hasAuthorship W4313245257A5066265052 @default.
- W4313245257 hasBestOaLocation W43132452571 @default.
- W4313245257 hasConcept C118487528 @default.
- W4313245257 hasConcept C119857082 @default.
- W4313245257 hasConcept C12267149 @default.
- W4313245257 hasConcept C141404830 @default.
- W4313245257 hasConcept C148483581 @default.
- W4313245257 hasConcept C151956035 @default.
- W4313245257 hasConcept C154945302 @default.
- W4313245257 hasConcept C169258074 @default.
- W4313245257 hasConcept C27181475 @default.
- W4313245257 hasConcept C2778527774 @default.
- W4313245257 hasConcept C2780225610 @default.
- W4313245257 hasConcept C41008148 @default.
- W4313245257 hasConcept C46686674 @default.
- W4313245257 hasConcept C52001869 @default.
- W4313245257 hasConcept C71924100 @default.
- W4313245257 hasConcept C84525736 @default.
- W4313245257 hasConceptScore W4313245257C118487528 @default.
- W4313245257 hasConceptScore W4313245257C119857082 @default.
- W4313245257 hasConceptScore W4313245257C12267149 @default.
- W4313245257 hasConceptScore W4313245257C141404830 @default.
- W4313245257 hasConceptScore W4313245257C148483581 @default.
- W4313245257 hasConceptScore W4313245257C151956035 @default.
- W4313245257 hasConceptScore W4313245257C154945302 @default.
- W4313245257 hasConceptScore W4313245257C169258074 @default.
- W4313245257 hasConceptScore W4313245257C27181475 @default.
- W4313245257 hasConceptScore W4313245257C2778527774 @default.
- W4313245257 hasConceptScore W4313245257C2780225610 @default.
- W4313245257 hasConceptScore W4313245257C41008148 @default.
- W4313245257 hasConceptScore W4313245257C46686674 @default.
- W4313245257 hasConceptScore W4313245257C52001869 @default.
- W4313245257 hasConceptScore W4313245257C71924100 @default.
- W4313245257 hasConceptScore W4313245257C84525736 @default.
- W4313245257 hasIssue "1" @default.
- W4313245257 hasLocation W43132452571 @default.
- W4313245257 hasLocation W43132452572 @default.
- W4313245257 hasLocation W43132452573 @default.
- W4313245257 hasLocation W43132452574 @default.
- W4313245257 hasLocation W43132452575 @default.
- W4313245257 hasLocation W43132452576 @default.
- W4313245257 hasOpenAccess W4313245257 @default.
- W4313245257 hasPrimaryLocation W43132452571 @default.