Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313252101> ?p ?o ?g. }
- W4313252101 endingPage "113416" @default.
- W4313252101 startingPage "113416" @default.
- W4313252101 abstract "Remote sensing is widely used to detect forest disturbances (e.g., wildfires, harvest, or outbreaks of pathogens or insects) over spatiotemporal scales that are infeasible to capture with field surveys. To understand forest ecosystem dynamics and the ecological role of human and natural disturbances, researchers and managers would like to characterize spatiotemporal patterns of several types of disturbance. Recent advances include the development and testing of algorithms to automatically detect and attribute an array of disturbance types across large forest landscapes from remotely sensed imagery. We reviewed the scientific literature for automated disturbance type attribution in forest ecosystems to synthesize current knowledge and inform future work. We created metrics that characterize study contexts, methods, and outcomes to evaluate 34 studies that automated the attribution of several (two or more) forest disturbance types. Reported accuracies of ∼80% for up to eight disturbance types at local (500 km2) to continental (6.5 × 106 km2) spatial extents reaffirm the potential for attributing forest disturbances from remote sensing data at scales relevant to ecological research and forest management. Generally, greater accuracies were reported for attributing disturbance types that affect most of a pixel and exhibit spectral signatures distinct from other disturbances or the prior (undisturbed) condition. Accuracy of attributing disturbance type tends to be notably lower for disturbances with smaller spatial extents or resulting in subtle spectral changes, such as small patches of tree mortality covering <40% of a pixel or areas of tree damage without evident mortality (e.g., defoliator outbreaks). Nearly all (33 of 34) studies used Landsat image time series to attribute disturbance types because the Landsat archive is freely accessible, spans several decades (allowing longer-term change analyses), is calibrated to facilitate change analyses, and has multiple spectral bands that aid algorithms. In our synthesis, most studies focused on specific disturbance types of interest within a particular study area, rather than a comprehensive list of types that would make the algorithm more generally applicable at broader spatial extents. We recommend several future research areas to improve the thematic resolution, accuracy, and potentially the transferability of attribution algorithms. Further development and testing of algorithms will continue to reveal the most effective approaches for attributing disturbance types that have been more difficult to detect with available spectral data to date, such as insect damage or low severity wildfire, and to evaluate model sensitivity as well as accuracy. The lessons that collectively emerge from automated forest disturbance attribution studies have the potential to guide future research and management applications." @default.
- W4313252101 created "2023-01-06" @default.
- W4313252101 creator A5003430223 @default.
- W4313252101 creator A5008728645 @default.
- W4313252101 creator A5013370689 @default.
- W4313252101 creator A5031795519 @default.
- W4313252101 creator A5059734329 @default.
- W4313252101 creator A5077699288 @default.
- W4313252101 date "2023-02-01" @default.
- W4313252101 modified "2023-10-16" @default.
- W4313252101 title "Automated attribution of forest disturbance types from remote sensing data: A synthesis" @default.
- W4313252101 cites W1569476219 @default.
- W4313252101 cites W1821964282 @default.
- W4313252101 cites W1834239181 @default.
- W4313252101 cites W1889848888 @default.
- W4313252101 cites W1902238321 @default.
- W4313252101 cites W1951564719 @default.
- W4313252101 cites W1967726776 @default.
- W4313252101 cites W1970833074 @default.
- W4313252101 cites W1979210946 @default.
- W4313252101 cites W1981213426 @default.
- W4313252101 cites W1989203457 @default.
- W4313252101 cites W2006593619 @default.
- W4313252101 cites W2011500029 @default.
- W4313252101 cites W2019652370 @default.
- W4313252101 cites W2022224360 @default.
- W4313252101 cites W2025593793 @default.
- W4313252101 cites W2029576285 @default.
- W4313252101 cites W2042909031 @default.
- W4313252101 cites W2046875527 @default.
- W4313252101 cites W2049428557 @default.
- W4313252101 cites W2066559130 @default.
- W4313252101 cites W2074299769 @default.
- W4313252101 cites W2093498564 @default.
- W4313252101 cites W2118364838 @default.
- W4313252101 cites W2140131090 @default.
- W4313252101 cites W2140908571 @default.
- W4313252101 cites W2149402324 @default.
- W4313252101 cites W2151702570 @default.
- W4313252101 cites W2163541402 @default.
- W4313252101 cites W2171370728 @default.
- W4313252101 cites W2199623839 @default.
- W4313252101 cites W2315460111 @default.
- W4313252101 cites W2337401619 @default.
- W4313252101 cites W2387188207 @default.
- W4313252101 cites W2400310958 @default.
- W4313252101 cites W2439576902 @default.
- W4313252101 cites W2523713226 @default.
- W4313252101 cites W2555994754 @default.
- W4313252101 cites W2589531503 @default.
- W4313252101 cites W2590351988 @default.
- W4313252101 cites W2598828605 @default.
- W4313252101 cites W2608255143 @default.
- W4313252101 cites W2618708155 @default.
- W4313252101 cites W2625277120 @default.
- W4313252101 cites W2735087910 @default.
- W4313252101 cites W2755532011 @default.
- W4313252101 cites W2803534171 @default.
- W4313252101 cites W2805612852 @default.
- W4313252101 cites W2888218114 @default.
- W4313252101 cites W2888259544 @default.
- W4313252101 cites W2890658853 @default.
- W4313252101 cites W2897285410 @default.
- W4313252101 cites W2900636113 @default.
- W4313252101 cites W2906181209 @default.
- W4313252101 cites W2911964244 @default.
- W4313252101 cites W2916601107 @default.
- W4313252101 cites W2922152173 @default.
- W4313252101 cites W2944712366 @default.
- W4313252101 cites W2952045193 @default.
- W4313252101 cites W2981801792 @default.
- W4313252101 cites W2994409344 @default.
- W4313252101 cites W3006326734 @default.
- W4313252101 cites W3013122662 @default.
- W4313252101 cites W3022534036 @default.
- W4313252101 cites W3023775819 @default.
- W4313252101 cites W3028823434 @default.
- W4313252101 cites W3033994816 @default.
- W4313252101 cites W3034782845 @default.
- W4313252101 cites W3041849717 @default.
- W4313252101 cites W3048142225 @default.
- W4313252101 cites W3085762746 @default.
- W4313252101 cites W3090216892 @default.
- W4313252101 cites W3107192144 @default.
- W4313252101 cites W3112290353 @default.
- W4313252101 cites W3123277870 @default.
- W4313252101 cites W3164342458 @default.
- W4313252101 cites W3174654135 @default.
- W4313252101 cites W3204853648 @default.
- W4313252101 cites W3208314049 @default.
- W4313252101 cites W4200286134 @default.
- W4313252101 cites W4205301855 @default.
- W4313252101 cites W4211187781 @default.
- W4313252101 cites W773459379 @default.
- W4313252101 doi "https://doi.org/10.1016/j.rse.2022.113416" @default.
- W4313252101 hasPublicationYear "2023" @default.
- W4313252101 type Work @default.
- W4313252101 citedByCount "3" @default.